Learning to Associate DBpedia Entities like Humans

Jörn Hees

2017-09-14 DBpedia Meetup Amsterdam

Jörn Hees

- Linked Data, Machine Learning, Al
- An RDFLib maintainer (Python)
- <u>http://joernhees.de</u>, @joernhees
- https://w3id.org/associations

- Mental connections between concepts
- What's the first thing that comes to your mind when thinking about ...?
- Example:
 - Dog

- Mental connections between concepts
- What's the first thing that comes to your mind when thinking about ... ?
- Example:
 - Dog: Cat, collar, leash, walk, fur, bark

- Mental connections between concepts
- What's the first thing that comes to your mind when thinking about ... ?
- Example:
 - Dog: Cat, collar, leash, walk, fur, bark
 - House

- Mental connections between concepts
- What's the first thing that comes to your mind when thinking about ... ?
- Example:
 - Dog: Cat, collar, leash, walk, fur, bark
 - House: Roof, door, window, flat, live

Associations vs. Similarity

- Partially overlapping, but *≠*
- Strongly Associated but not Similar:
 - Baby Crying
- Similar but not Strongly Associated:
 - Dog Terrier (100 ppl top answers: Cat (57 %), Collar (5 %), bark (2 %))

Outline

- Background
- My Research
- Evaluation
- Demo

Outline

- Background
- My Research
- Evaluation

Motivation

- Associations are important for thinking:
 - Navigate from one thought to another
 - "Closeness of concepts in our mind" Chris Welty's First Lady "Nixon" example
- Can we teach machines to do the same?
 - Using their Knowledge?
 - Linked Data

- Research Question:
 - Is it possible to learn patterns for Human Associations from Linked Data?

- Research Question:
 - Is it possible to learn patterns for Human Associations from Linked Data?

- Research Question:
 - Is it possible to learn patterns for Human Associations from Linked Data?

- Research Question:
 - Is it possible to learn patterns for Human Associations from Linked Data?

- Research Question:
 - Is it possible to learn patterns for Human Associations from Linked Data?
- Goal:
 Given an input node
 predict the output node(s)
 we would associate

- Research Question:
 - Is it possible to learn patterns for Human Associations from Linked Data?
- Dataset of "Semantic Associations" needed

- Research Question:
 - Is it possible to learn patterns for Human Associations from Linked Data?
- Dataset of "Semantic Associations" needed

Semantic Associations Dataset

- (Raw) Edinburgh Associative Thesaurus (EAT) as RDF (1.7 M triples)
- 727 verified distinct Semantic Associations

Semantic Associations Dataset

• 727 verified distinct Semantic Associations

Stimulus	Response
dbr:Cow	dbr:Milk
dbr:Camping	dbr:Tent
dbr:Expense	dbr:Money
dbr:Bed	dbr:Sleep
dbr:Pupil	dbr:Eye

- Not readily modelled in DBpedia!
- Not one property!

Outline

- Background
- My Research
- Evaluation

Outline

- Background
- My Research
- Evaluation

Evaluation

- How good are the predictions?
 - Training/Test set split
 - Given a stimulus from the test set, what's the rank of the true response in the prediction results?

31

Evaluation Results

Method	Rec@1	Rec@2	Rec@3	Rec@5	Rec@10	MAP	NDCG
DocSim	4.2%	5.6%	5.6%	6.9%	12.5%	6.6%	12.5%
Word2Vec	4.2%	5.6%	8.3%	12.5%	15.3%	7.8%	12.5%
RDF2Vec	5.6%	12.5%	13.9%	15.3%	16.7%	10.3%	14.4%
MW	6.9%	9.7%	11.1%	13.9%	18.1%	11.0%	17.9%
NB Bidi WL PR	13.9%	20.8%	22.2%	29.2%	31.9%	20.2%	23.8%
NB Bidi WL InDeg	15.3%	20.8%	26.4%	31.9%	33.3%	21.4%	24.8%
gpl + precisions	25.0%	36.1%	44.4%	52.8%	62.5%	37.1%	46.0%
gpl + neural net	30.6%	36.1%	48.6%	51.4%	62.5%	40.3%	48.3%

Evaluation Results

Method	Rec@1	Rec@2	Rec@3	Rec@5	Rec@10	MAP	NDCG
DocSim	4.2%	5.6%	5.6%	6.9%	12.5%	6.6%	12.5%
Word2Vec	4.2%	5.6%	8.3%	12.5%	15.3%	7.8%	12.5%
RDF2Vec	5.6%	12.5%	13.9%	15.3%	16.7%	10.3%	14.4%
MW	6.9%	9.7%	11.1%	13.9%	18.1%	11.0%	17.9%
NB Bidi WL PR	13.9%	20.8%	22.2%	29.2%	31.9%	20.2%	23.8%
NB Bidi WL InDeg	15.3%	20.8%	26.4%	31.9%	33.3%	21.4%	24.8%
gpl + precisions	25.0%	36.1%	44.4%	52.8%	62.5%	37.1%	46.0%
gpl + neural net	30.6%	36.1%	48.6%	51.4%	62.5%	40.3%	48.3%

Avg. Inter-Human Agreement: ~ 32 %

Outline

- Background
- My Research
- Evaluation

Outline

- Background
- My Research
- Evaluation
- Demo

Demo

HUMAN ASSOCIATION PREDICTION DEMO

This page demonstrates how human associations can be simulated with Linked Data.

For this demo, we used the Graph Pattern Learner to train a machine learning model on a training dataset of human associations (e.g., Dog - Cat).

Click continue to try the *trained model* out yourself by entering a *source* node and have it predict *target* nodes that humans are likely to associate. As a fallback you can also watch a short video of the demo (YouTube).

Demo

HUMAN ASSOCIATION PREDICTION DEMO

This page demonstrates how human associations can be simulated with Linked Data.

For this demo, we used the Graph Pattern Learner to train a machine learning model on a training dataset of human associations (e.g., Dog - Cat).

Click continue to try the *trained model* out yourself by entering a *source* node and have it predict *target* nodes that humans are likely to associate. As a fallback you can also watch a short video of the demo (YouTube).

Other Applications

- TasteDive (Recommendation Engine) Books
 - ~ 50 % Recall@10
- DBpediaNYD
 - ~ 63 % Recall@10

Summary

- Goal Learning Graph Patterns for Associations
- Semantic Association Dataset
- Graph Pattern Learner
 Learns SPARQL Patterns for
 Source-Target-Pairs
 Demo

Future Work

- Apply Evolutionary Algorithm
 - to other datasets
 - to other problems
- Extensions:
 - Literals
 - LOD-a-lot & #LD

Discussion

Thanks for your attention

Questions?

