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PART 1

Nonanalyticity of Kullback Information in Mixtures



Mild Analyticity Assumption

Kullback Divergence 𝐾 𝑞‖𝑝 = 𝑞 𝑥 log
𝑞(𝑥)

𝑝(𝑥)
𝑑𝑥

Kullback Information 𝐾 𝜔 = 𝐾 𝑝𝜔∗‖𝑝𝜔 log
𝑞(𝑥)

𝑝(𝑥)

Fisher Information 𝐹 𝜔∗ = 𝛻2𝐾 𝜔∗ log
𝑞(𝑥)

𝑝(𝑥)

Analyticity of Kullback information often assumed in asymptotic theory.

Examples

1. Fisher information is positive definite

(asymptotic normality of MLE, …)

2. Log likelihood ratio log 𝑞(𝑥)/𝑝(𝑥) is analytic

(asymptotics of marginal likelihood integral

in singular learning theory)

S.Watanabe: Algebraic Geometry and Statistical Learning Theory, Cambridge Monographs on Applied and Computational Mathematics 25 (2009).



Nonanalyticity in Mixture Models

Exponential family 𝑝𝜔 𝑥 ∝ exp 𝜔𝑥 − 𝐴 𝜔

Mixture model 𝛼𝑝𝜔+𝜔∗ 𝑥 + 1 − 𝛼 𝑝𝜔∗ 𝑥

Log-likelihood ratio 

𝑓 𝑥|𝛼 = − log
𝛼𝑝𝜔+𝜔∗ 𝑥 + 1−𝛼 𝑝𝜔∗ 𝑥

𝑝𝜔∗ 𝑥

= − log 1 + 𝛼 𝑒𝜔𝑥−𝐴 𝜔+𝜔∗ +𝐴 𝜔∗
− 1

Power series coefficients grow quickly if 𝑥 unbounded.

−1 k

𝑘!

𝜕𝑘𝑓

𝜕𝛼𝑘
𝑥|0 =

1

𝑘
𝑒𝜔𝑥−𝐴 𝜔+𝜔∗ +𝐴 𝜔∗

− 1
𝑘

≥
1

𝑘
𝑒𝑘𝜔𝑥/2 for all 𝑥 ∈ 𝒳

Here, 𝒳 is the set of all 𝑥 where 𝜔 𝑥 is sufficiently large.



Nonanalyticity in Mixture Models

Kullback information 𝐾 𝛼 =  𝑝𝜔∗ 𝑥 𝑓 𝑥 𝛼 𝑑𝑥

Power series coefficients
1

𝑘!

𝜕𝑘𝐾

𝜕𝛼𝑘
0 = ∗𝑝𝜔 𝑥

1

𝑘!

𝜕𝑘𝑓

𝜕𝛼𝑘
𝑥|0 𝑑𝑥

As 𝑘 → ∞, the size of the coefficient is dominated by

𝒳 𝑝𝜔∗ 𝑥
−1 k

𝑘!

𝜕𝑘𝑓

𝜕𝛼𝑘
𝑥|0 𝑑𝑥 ≥ 𝒳 𝑝𝜔∗ 𝑥

1

𝑘
𝑒
𝑘𝜔𝑥

2 𝑑𝑥

=
1

𝑘
𝒳 𝑒

𝜔∗+𝑘𝜔/2 𝑥−𝐴 𝜔∗
𝑑𝑥

=
1

𝑘
𝑒𝐴 𝜔∗+𝑘𝜔/2 −𝐴 𝜔∗

𝐶𝑘

where 𝐶𝑘 = 𝒳 𝑝𝜔∗+𝑘𝜔/2 𝑥 𝑑𝑥 → 1.

Thus, if 𝐴 𝜔∗ + 𝑘𝜔/2 /𝑘 → ∞, then radius of convergence is 0 

and 𝐾 𝛼 is nonanalytic. Examples: Gaussian, Poisson, gamma.



Gaussian Mixtures

Example. One-dimensional Gaussian.

𝜔1 =
𝜇

𝜎2
, 𝑥1 = 𝑡

𝜔2 =
1

𝜎2
, 𝑥2 = −

1

2
𝑡2

𝐴 𝜔 =
1

2

𝜔1
2

𝜔2
+ log

2𝜋

𝜔2

Now, if 𝜔 = (𝜔1, 0), then 
1

𝑘
𝐴 𝜔∗ +

𝑘𝜔

2
≈

𝜔1
2

2𝜔2
𝑘 → ∞ as 𝑘 → ∞. 

Hence, the Kullback information of Gaussian mixtures is nonanalytic.

See work of Watanabe, Yamazaki and Aoyagi (2004) where they 

also proved that 𝐾 𝜔 is equivalent to a polynomial. We extend 

their results to polynomial families using algebraic geometry.

S. Watanabe, K. Yamazaki, and M. Aoyagi: Kullback information of normal mixture is not an analytic function, Technical Report of IEICE, NC2004-50 (2004).



PART 2

Equivalence of Kullback Information to a Polynomial



Equivalence is Enough

Definition. Loss functions 𝑓, 𝑔: Ω → ℝ≥0 are equivalent if there exist 

constants 𝑐1, 𝑐2 > 0 such that 𝑐1𝑔 𝜔 ≤ 𝑓 𝜔 ≤ 𝑐2𝑔 𝜔 for all 𝜔 ∈ Ω.

Easy to check for reflexivity, symmetry and transitivity.

Equivalent functions produce the same asymptotic properties.

Example. For large 𝑁, the log Laplace integral is asymptotically

log 𝑍𝑓 𝑁 = log Ω 𝑒
−𝑁𝑓 𝜔 𝑑𝜔

≈ −𝜆𝑓 log𝑁 + 𝜃𝑓 − 1 log log𝑁 + 𝐶

if 𝑓 𝜔 vanishes in Ω. 𝜆𝑓, 𝜃𝑓 is the real log canonical threshold of 𝑓.

If 𝑓 is equivalent to 𝑔, then their RLCTs are the same.

Question. Is Kullback information equivalent to an analytic function?



Milder Upper-Bound Assumption

Fix 𝜔∗ and rewrite the Kullback information as

𝐾 𝜔 = 𝐾 𝑝𝜔∗‖𝑝𝜔 = 
𝑝𝜔 𝑥

𝑝𝜔∗ 𝑥
− 1

2

𝑆
𝑝𝜔 𝑥

𝑝𝜔∗ 𝑥
𝑝𝜔∗ 𝑥 𝑑𝑥

where real-analytic 𝑆 𝑡 satisfies − log t = − 𝑡 − 1 + 𝑡 − 1 2𝑆 𝑡 .

Assumption 1. Parameter space Ω is compact and semi-analytic.

Assumption 2. There exists real-analytic ҧ𝑆 𝑥 such that

𝑝𝜔∗ 𝑥 ≤ ҧ𝑆 𝑥 and 𝑆
𝑝𝜔 𝑥

𝑝𝜔∗ 𝑥
≤ ҧ𝑆 𝑥 for all 𝜔 ∈ Ω; 

ഥ𝐾 𝜔 = 
𝑝𝜔 𝑥

𝑝𝜔∗ 𝑥
− 1

2
ҧ𝑆 𝑥 𝑝𝜔∗ 𝑥 𝑑𝑥 is finite, real-analytic.



Polynomial Families

Definition. A family 𝑝𝜔 of distributions is polynomial if

1. Each moment 𝑚𝜔 𝛾 = 𝔼 𝑋1
𝛾1⋯𝑋𝑚

𝛾𝑚 exists and is polynomial in 𝜔;

2. Each 𝑝𝜔 is defined uniquely by its moments.

See work of Belkin and Sinha (2010).

Example. Gaussian, Poisson, gamma, binomial distributions are 

polynomial, but Weibull, Cauchy distributions are not.

Proposition. Mixtures of polynomial families are polynomial.

M. Belkin, and K. Sinha: Polynomial learning of distribution families, 51st Annual IEEE Symposium on Foundations of Computer Science (2010), 103-112.



Equivalence to Sum of Squares

Despite being nonanalytic, the Kullback information is equivalent to a 

polynomial, so asymptotic laws of the mixture model may be derived.

Main Theorem. Under Assumptions 1 & 2, if 𝑝𝜔 is a polynomial  

family, then 𝐾 𝜔 is equivalent to the polynomial

𝑀 𝜔 = σ1≤ 𝛾 ≤ℓ 𝑚𝜔 𝛾 − 𝑚𝜔∗ 𝛾
2
.

Corollary. The RLCT of 𝐾 𝜔 equals the RLCT of the ideal

𝑚𝜔 𝛾 − 𝑚𝜔∗ 𝛾 : 1 ≤ 𝛾 ≤ ℓ .

We may thus use ideal-theoretic techniques to compute the RLCT.



Gaussian Mixtures

Example. Two-dimensional Gaussians with standard variance.

𝑝𝜔 : 𝛼1, 𝛼2 -mixture of Gaussians with means 𝜇11, 𝜇12 , 𝜇21, 𝜇22
𝑝𝜔∗ : unmixed Gaussian with mean 𝜇1

∗, 𝜇2
∗

The Kullback information 𝐾 𝜔 is equivalent to the polynomial

𝑃 𝜔 = ( 𝛼1𝜇11 + 𝛼2𝜇21 − 𝜇1
∗ )2 +

( 𝛼1𝜇12 + 𝛼2𝜇22 − 𝜇2
∗ )2 +

( 𝛼1𝜇11
2 + 𝛼2𝜇21

2 − 𝜇1
∗2 )2 +

( 𝛼1𝜇11𝜇12 + 𝛼2𝜇21𝜇22 − 𝜇1
∗𝜇2

∗ )2 +

( 𝛼1𝜇12
2 + 𝛼2𝜇22

2 − 𝜇2
∗2 )2 +

( 𝛼1𝜇11
3 + 𝛼2𝜇21

3 − 𝜇1
∗3 )2 +

( 𝛼1𝜇11
2 𝜇12 + 𝛼2𝜇21

2 𝜇22 − 𝜇1
∗2𝜇2

∗ )2 +

( 𝛼1𝜇11𝜇12
2 + 𝛼2𝜇21𝜇22

2 − 𝜇1
∗𝜇2

∗2 )2 +

( 𝛼1𝜇12
3 + 𝛼2𝜇22

3 − 𝜇2
∗3 )2

Hence, the maximum likelihood variety 𝜔 ∶ 𝐾 𝜔 = 0
is a fiber over the secant map of Veronese embeddings.



PART 3

Proof of Equivalence



Comparing Distributions

Let 𝜙ω 𝑡 =  𝑒𝑖𝑡𝑥𝑝𝜔 𝑥 𝑑𝑥 be the characteristic function of 𝑝𝜔 𝑥 .

If all the moments 𝑚𝜔 𝛾 of 𝑝𝜔 exist, then

𝜙ω 𝑡 = σ𝛾
𝑖 𝛾

𝛾 !

|𝛾|
𝛾

𝑡𝛾𝑚𝜔 𝛾 .

Kullback loss         𝐾 𝜔 = 𝐾 𝑝𝜔∗‖𝑝𝜔

Density loss           𝑃 𝜔 =  𝑝𝜔 𝑥 − 𝑝𝜔∗ 𝑥
2
𝑑𝑥

Characteristic loss Φ 𝜔 =  𝜙𝜔 𝑡 − 𝜙𝜔∗ 𝑡
2
𝑑𝑡

Moment loss 𝑀 𝜔 = σ1≤ 𝛾 ≤ℓ 𝑚𝜔 𝛾 − 𝑚𝜔∗ 𝛾
2



Proof of Main Theorem

Step 1. Under Assumptions 1 & 2,

show that 𝐾 𝜔 is equivalent to 𝑃 𝜔 .

Use resolution of singularities.

Step 2. Show that 𝑃 𝜔 is equal to Φ 𝜔 .

Use Fourier transform and Parseval’s Theorem. 

Step 3. Assuming 𝑝𝜔 is a polynomial family and Ω is compact,

show that Φ 𝜔 is equivalent to 𝑀 𝜔 .

Use functional analysis, Hilbert Basis Theorem, 

and the Cauchy-Schwarz inequality.



Step 3. Ideal-Theoretic Approach.

Step 3. Assuming 𝑝𝜔 is a polynomial family and Ω is compact,

show that Φ 𝜔 is equivalent to 𝑀 𝜔 .

Use Hilbert Basis Theorem, functional analysis,

and the Cauchy-Schwarz inequality.

Φ 𝜔 =  σ𝛾
𝑖 𝛾

𝛾 !

|𝛾|
𝛾

𝑡𝛾 𝑚𝜔 𝛾 − 𝑚𝜔∗ 𝛾
2

𝑑𝑡

𝑀 𝜔 = σ1≤ 𝛾 ≤ℓ 𝑚𝜔 𝛾 − 𝑚𝜔∗ 𝛾
2

Lemma. Let 𝐹 𝜔 = 𝑓𝑥 𝜔 2 𝑑𝑥 and 𝐺 𝜔 = 𝑔𝑡 𝜔
2 𝑑𝑡 be

integrals/sums of squares with 𝑓𝑥 𝜔 , 𝑔𝑡 𝜔 real-analytic in 𝜔.

If Ω is compact and 𝑓𝑥 𝜔 ∈ 𝑔𝑡 𝜔 for each 𝑥, then there 

exists a constant 𝑐 > 0 such that 𝐹 𝜔 ≤ 𝑐𝐺 𝜔 for all 𝜔 ∈ Ω.

Proof. Cauchy-Schwarz inequality.



Step 1. Resolution of Singularities

Recall that 

𝐾 𝜔 = 
𝑝𝜔 𝑥

𝑝𝜔∗ 𝑥
− 1

2

𝑆
𝑝𝜔 𝑥

𝑝𝜔∗ 𝑥
𝑝𝜔∗ 𝑥 𝑑𝑥,

𝑃 𝜔 = 
𝑝𝜔 𝑥

𝑝𝜔∗ 𝑥
− 1

2

𝑝𝜔∗ 𝑥 𝑝𝜔∗ 𝑥 𝑑𝑥,

𝑝𝜔∗ 𝑥 ≤ ҧ𝑆 𝑥 and 𝑆
𝑝𝜔 𝑥

𝑝𝜔∗ 𝑥
≤ ҧ𝑆 𝑥 ,

ഥ𝐾 𝜔 = 
𝑝𝜔 𝑥

𝑝𝜔∗ 𝑥
− 1

2
ҧ𝑆 𝑥 𝑝𝜔∗ 𝑥 𝑑𝑥.



Step 1. Resolution of Singularities

a. Since ഥ𝐾 𝜔 is analytic, there exists resolution of singularities 

𝜋:ℳ → Ω with ℳ compact such that in each of chart of ℳ,

ഥ𝐾 𝜋(𝜇) = 
𝑝𝜋(𝜇) 𝑥

𝑝𝜔∗ 𝑥
− 1

2
ҧ𝑆 𝑥 𝑝𝜔∗ 𝑥 𝑑𝑥 = 𝜇2𝜅 .

b. By comparing terms, there exists real-analytic 𝑎 𝑥, 𝜇 such that
𝑝𝜋(𝜇) 𝑥

𝑝𝜔∗ 𝑥
− 1 = 𝑎 𝑥, 𝜇 𝜇𝜅.

c. In each chart, 𝜇2𝜅 ≥ 𝐾 𝜋 𝜇 = 𝑏𝐾 𝜇 𝜇2𝜅 where

𝑏𝐾 𝜇 = 𝑎 𝑥, 𝜇 2 𝑆
𝑝𝜋 𝜇 𝑥

𝑝𝜔∗ 𝑥
𝑝𝜔∗ 𝑥 𝑑𝑥.

The chart is compact, so 𝑏𝐾 𝜇 is bounded below.

Hence, 𝐾 𝜋 𝜇 is equivalent to 𝜇2𝜅 in the chart.



Step 1. Resolution of Singularities

d. Similarly, 𝜇2𝜅 ≥ 𝑃 𝜋 𝜇 = 𝑏𝑃 𝜇 𝜇2𝜅 where

𝑏𝑃 𝜇 = 𝑎 𝑥, 𝜇 2 𝑝𝜔∗ 𝑥 2𝑑𝑥. 
𝑖 𝛾 𝑡𝛾

𝛾 !

The chart is compact, so 𝑏𝑃 𝜇 is bounded below.

Hence, 𝑃 𝜋 𝜇 is equivalent to 𝜇2𝜅 in the chart.

e. Since 𝐾 𝜋(𝜇) and 𝑃 𝜋 𝜇 are both equivalent to 𝜇2𝜅

in every chart and there are finitely many charts in ℳ, 

they are equivalent over ℳ and hence over Ω as well.
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