Proofs as programs: challenges and strategies for program synthesis

Shaowei Lin 20210422 Topos Institute Colloquium

Joint work with Zhangsheng Lai, Liang Ze Wong, Jin Xing Lim, Barnabe Monnot, Georgios Piliouras.

Background

Goal

Open protocols for decentralized embodied intelligence

Interests

- Statistical learning theory for spiking networks
- Dependent type theory for machine reasoning
- Quantum path integrals and motivic information

History

- Berkeley PhD Mathematics
- DARPA Math Challenges in Deep Learning
- A*STAR Urban Systems Initiative
- SUTD Assistant Professor

Nervous system for smart cities

Smart city applications

Domain	Application	
unified platform	sharing of sensors and data among government agencies	
urban planning	combining microclimatic models with sensing for town designs	
environmental monitoring	measuring noise pollution for enforcement of noise laws	
structural health monitoring	detecting faults on port cranes through sensors and analytics	
infrastructural maintenance	detecting potholes, broken lights through cars with sensors	
public cleanliness	sensing trash bin fill-levels to reduce cleaning workloads	
high-tech farming	improving crop yields with sensors in green houses	
elderly healthcare	monitoring elderly for falls, depression through home sensors	
power grid security	detecting, mitigating attacks with adversarial machine learning	

Reprogramming on the fly

Example 1

A city has camera nodes which send videos to the backend via wifi gateways. In emergencies, the nodes can be reached by 4G.

During a natural disaster, some gateways were destroyed.

How do we reprogram a camera node to stream critical videos by relaying through wifi connections to other nodes?

Wrapping services in code

Example 2

My grandmother wants to start a bakery. She is great at cooking but is poor with technology.

To ensure freshness, she wants to do just-in-time baking. This means that she will only order ingredients and arrange deliveries when customers put in their orders.

How can she source for ingredients and deliveries in real time while also selling to the community?

Top-down software synthesis

Example 3

The CEO of Acme Books wants a robot that takes a box of books and arranges them in alphabetical order of authors on a shelf.

His manager buys a generic android from Atoz Bots. She observes that trivially an empty shelf is sorted.

She instructs her engineer to design an algorithm to insert a new book on a sorted shelf. Her proof assistant verifies that this gets the job done.

Knowledge graph queries

Example 4 [Fong & Spivak 2018]

The following knowledge graph shows the entities in a company and the relations between them.

The CEO needs to contact the secretary of Ruth's department.

An auditor wants a list of all the managers in the company. He wonders if every manager works in the department they manage.

Fong, Brendan, and David I. Spivak. "Seven sketches in compositionality: An invitation to applied category theory." arXiv preprint arXiv:1803.05316 (2018).

Decentralized Embodied Intelligence

How can a network of agents accomplish given tasks by performing decentralized steps, managing embodied resources, and learning intelligent strategies? action objective machine space? function? reasoning?

GOAL Neural and symbolic modules that work seamlessly together to accomplish intuitive reasoning

Proof assistants

Proof assistants

Axioms, definitions, theorems make up the global context, e.g.

Definition. A list is sorted if it is

- empty;
- a one-element list; or
- of the form (x :: y :: l) where $x \le y$ and (y :: l) is sorted.

Definition. The list insert(*i*, *l*) is

- [*i*] if *l* is empty;
- (i::h::t) if l = (h::t) and $i \le h$;
- (h::insert(i,t)) if l = (h::t) and i > h.

```
Fixpoint insert (i : nat) (l : list nat) :=
  match l with
    [] ⇒ [i]
    | h :: t ⇒ if i <=? h then i :: h :: t
        else h :: insert i t
</pre>
```

end.

Pierce, Benjamin C., Chris Casinghino, Marco Gaboardi, Michael Greenberg, Cătălin Hriţcu, Vilhelm Sjöberg, and Brent Yorgey. "Software foundations." *Webpage: http://www.cis.upenn.edu/bcpierce/sf/current/index.html* (2010).

Doglde	_		Х
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>N</u> avigation <u>T</u> ry Tactics Te <u>m</u> plates <u>Q</u> ueries <u>T</u> ools <u>C</u> ompile <u>W</u> indows <u>H</u> elp			
□ 🗶 🗣 ⊉ 🖗 😫 🗢 🜩 🕕			
sort.v			
Lemma insert_sorted: forall a l,. sorted 1 -> sorted (insert a l). Proof.		_(1/1)	
Proof assistants guide us in constructing a term/proof for a given type/theorem.			
Messages / Errors / Jobs /			
Ready, proving insert_sorted	is ready	1	0/0

Ready, proving insert_sorted

Strictly Unital ∞ -Categories." *arXiv preprint arXiv:2007.08307* (2020).

Category of types and terms

Category of types and terms

Program synthesis

Intents as types, implementations as terms.

Example. Type of all sorting algorithms.

```
Theorem sort_spec :
(1 : seq nat) \rightarrow \Sigma (10 : seq nat),
(sorted leq 10) \wedge (perm_eq 1 10).
```

Top-down (not bottom-up) synthesis of algorithm from specification.

Intents should specify constraints on the algorithm for greater reuse. They should not specify the steps of the algorithm.

Instead of humans searching for implementations on StackOverflow, we prefer machines searching for implementations via intents.

Intents and implementations

Neural-symbolic program synthesis

Neural-symbolic program synthesis

Theorem proving

- CoqHammer
- CoqGym
- ProverBot
- GamePad

Program synthesis

- SketchAdapt
- DeepCoder
- DeepCode
- RobustFill
- Bayou
- GPT-3

Program synthesis

(joint work with Jin Xing Lim, Barnabe Monnot, Georgios Piliouras)

Synthesizing sort

Lessons learnt

Important to use good library of theorems about sorted and perm_eq.

Heavy use of reflection/transport to switch between prop and bool, and elaboration/unification to infer implicit/ambiguous arguments.

Many goals are trivial and solved automatically by good tactics.

Some goals were non-trivial. Opportunity to write better tactics that tackle other similar issues.

```
Theorem sort_spec (1 : seq nat) : {10 : seq nat & sorted leq 10 & perm_eq 1 10}.
Proof.
 elim: 1 => [|a 1 [10 s0 p0]].
    (* Base case of 1 *)
    by exists [::].
    (* Inductive case of 1 *)
    move: a 1 s0 p0.
    elim: 10 \Rightarrow [b y IHy].
      (* Base case of 10 *)
      move => a l _ /perm_eq_nilP p0.
      by rewrite p0; exists [::a].
      (* Inductive case of 10 *)
      move => a 1 s0 H1.
      case: (leqP a b) => ab.
        (* Case of a <= b *)
        exists (a::b::y) => //=.
        by apply /andP.
        by rewrite perm cons.
        (* Case of a > b *)
                                                       (* NON-TRIVIAL STEP *)
        case: (IHy a y) => {IHy} //=.
        move: (s0) => /path_sorted s0con //=.
        move => x H2 H3.
        exists (b::x) \Rightarrow //=.
        rewrite path min sorted //=.
          (* all (leq b) x *)
          move /(order_path_min leq_trans): s0 => s0.
          apply /allP.
          move: H3 s0 => /perm eq mem /eq all r <-s0 //=.
          move /ltnW: ab => ab.
          by rewrite ab s0.
          (* perm_eq (a :: 1) (b :: x) *)
          apply/perm_eqP => //= P.
          move/perm eqP: H1 => //= H1.
          move/perm eqP: H3 => //= H3.
          rewrite H1; rewrite <- H3.
          by apply: addnCA.
Defined.
```

Extraction

```
Fixpoint sort (1: list nat)
  : list nat :=
   match 1 with
   | nil => nil
   | h::t => insert h (sort t)
   end.
```

Require Coq.extraction.Extraction. Extraction Language OCaml. Recursive Extraction sort.

Extracted code does not use OCaml primitives for bool, nat, list.

```
type bool = True | False
type nat = 0 | S of nat
type 'a list = Nil | Cons of 'a * 'a list
```

Extraction

Extracting sort_spec to OCaml

Extracted code contains proofs of correctness of the algorithm which are not necessary for sorting.

```
let sort spec 1 =
 let _evar_0_ = ExistT2 (Nil, __, __) in
 let _evar_0_0 = fun a 10 __top_assumption_ ->
   let evar 0 0 = fun 11 \rightarrow
     let evar 0 0 = fun a0 -> ExistT2 ((Cons (a0, Nil)), __, __) in
     let _evar_0_1 = fun b y iHy a0 _ ->
       let _evar_0_1 = fun _ -> ExistT2 ((Cons (a0, (Cons (b, y)))), __, __) in
       let evar 0 2 = fun ->
         let _evar_0_2 = fun x -> ExistT2 ((Cons (b, x)), __, __) in
         let ExistT2 (x, _, _) = iHy a0 y ____ in
         evar 0 2 x in
       (match leqP a0 b with
         LeqNotGtn -> _evar_0_1
         GtnNotLeg -> evar 0 2 ) in
     let rec f 12 a0 13 = match 12 with
        | Nil -> evar 0 0 a0 13
        Cons (y, 14) -> _evar_0_1 y 14 (fun a1 15 _ _ -> f 14 a1 15) a0 13 in
     f l1 a l0 in
   let ExistT2 (x, _, _) = __top_assumption_ in
   evar 0 0 x in
 let rec f = function
  | Nil -> evar 0
  | Cons (y, l1) -> evar 0 0 y l1 (f l1) in
 f 1
                                                                          OCaml
```

Implementation theory

Type of expressions/programs in the implementation language. A theory is a language with equalities.

```
Inductive exp : Set :=
    Const : nat -> exp
    Plus : exp -> exp -> exp
    Times : exp -> exp -> exp
```

Semantics for the implementation language. [Chlipala 2013]

Using the proof assistant to construct a program with the right semantics.

```
Theorem sort_spec_exp :
    ∑ (f : exp), ∀ (l : seq nat),
    let 10 := (denote f) l in
    (sorted leq 10) ∧ (perm_eq 1 10).
```

Verification vs synthesis

It is easier to check a solution (e.g. check factorization of a large integer) than to find a solution (e.g. find the factors of a large integer).

Software verification and synthesis both involve formal methods, but they require completely different tools, strategies and mindsets. (Compare bottom-up verification and top-down synthesis of insertion sort.)

In verification, all layers of software stack needs to be scrutinized to uncover system loopholes and avoid giving false guarantees.

In synthesis, we make assumptions about the semantics of primitive instructions in our software layer and focus on deriving new behavior. Engineers working on lower software layers verify those assumptions.

Program representation

Synthesized programs need not be extracted/compiled (e.g. from Coq to OCaml) before storage. They can be saved in compressed form and extracted at run-time. We could even store them via the proof script that synthesized the program.

Andrej Bauer on representation of mathematical theorems:

We do not expect humans to memorize every proof of every mathematical statement they ever use, nor do we imagine that knowledge of a mathematical fact is the same thing as the proof of it. Humans actually memorize *proof ideas* which allow them to replicate the proofs whenever they need to. Proof assistants operate in much the same way, for good reasons.

Proof assistants facilitate translations from implementation languages to semantics (e.g. from structured cospans to algorithms) as well as from proof scripts to proof terms.

They call on type-engines to check if proof terms are well-formed or well-typed. They could be engine-agnostic or even theory-agnostic. (CatLab as proof assistant?)

Blockchain and incentives

Proofs/implementations can be made opaque or transparent.

Theorems/intents that use a prior result should depend only on its type and not the syntax of its term, unless it is a definition or ontology. Theorems should not break when the proof of a prior result is changed.

For an opaque proof/implementation, we can use blockchain to store the verification that it is well-typed without revealing its syntax.

We can use smart contracts to collect usage payment and deliver its syntax or API to other intents that need it for synthesis. These contracts create a hierarchy of incentives for conjectures or software goals.

Transport between theories

Library coq.sorting.permutation

```
Inductive Permutation : list A -> list A -> Prop :=
| perm_nil: Permutation [] []
| perm_skip x l l' : Permutation l l' -> Permutation (x::l) (x::l')
| perm_swap x y l : Permutation (y::x::l) (x::y::l)
| perm_trans l l' l'' : Permutation l l' -> Permutation l' l''
-> Permutation l l''.
```

Library mathcomp.ssreflect.seq

```
Definition perm_eq s1 s2 :=
  all [pred x | count_mem x s1 == count_mem x s2] (s1 ++ s2).
```

How do we effectively indicate that the two definitions are equivalent?

How do we transport a theorem/intent from one theory to another?

Transport between types

More generally, how do we transport between equivalent types?

Example [Tabareau, Tanter & Sozeau 2019]

Types Nat (unary numbers) and Bin (binary numbers) are equivalent. How do we effectively transport functions (e.g. addition, multiplication) and theorems (e.g. commutativity of addition) from one type to another?

Possible solutions

- 1. Boolean reflection
- 2. Parametric transport
- 3. Cubical transport
- 4. Univalent transport

Transport between types

Example. Sorting algorithms (joint work with Jin Xing Lim, Georgios Piliouras)

Sorting is writing the elements of a finite totally-ordered set in order to a list.

Insertion sort involves transporting/lifting this **set** to a **list**, and applying the induction principle for **lists** as a tactic.

Merge sort involves transporting/lifting this **set** to a **binary tree**, and applying the induction principle for **binary trees** as a tactic.

Quick sort involves transporting/lifting this **set** to a **binary search tree**, and applying the induction principle for **binary search trees** as a tactic.

We may generalize and apply these tactics to any goal that require the synthesis of functions over finite sets or lists, e.g. search, maximum, minimum, average.

Unification

To decide if a prior theorem may be applied to a goal, we need unification.

Goal forall (a : nat) (1 : list nat), sorted 1 -> sorted (insert a 1)

```
Theorem sorted_ind : forall (P : list nat -> Prop),
P [] ->
 (forall x : nat, P [x]) ->
 (forall (x y : nat) (l : list nat),
    x <= y -> sorted (y :: l) -> P (y :: l) -> P (x :: y :: l)) ->
    forall (l : list nat), sorted l -> P l
```

Unify forall (l : list nat), sorted l -> sorted (insert a l)
with forall (l : list nat), sorted l -> ?P l

The solution to the above unification problem is

?P := fun 10 : list nat => sorted (insert a 10)

Unfolding a definition (δ -reductions) can break unification, so it is not always advisable to unify normal forms with normal forms.

Knowledge Graphs

(joint work with Zhangsheng Lai, Liang Ze Wong)

Knowledge instances

Queries as types, answers as terms

Inductive empl :=

alan

ruth

| kris.

Inductive dept :=

sales

tech.

```
Definition works (e : empl) : dept :=
  match e with
   alan => sales
  ruth => sales
  kris => tech
 end.
Definition mgr (e : empl) : empl :=
  match e with
  | alan => ruth
  | ruth => ruth
  | kris => kris
  end.
Definition sec (e : dept) : empl :=
  match e with
  | sales => alan
  tech => kris
 end.
```

Queries as types, answers as terms

```
Structure ruth_sec_qry :=
{ ruth_sec :> empl;
  ruth_dept : dept;
  eq_ruth_dept : ruth_dept = works ruth;
  eq_ruth_sec : ruth_sec = sec ruth_dept }.
```

```
Definition ruth_sec_ans : ruth_sec_qry.
Proof. unshelve eexists. Focus 3. auto. Focus 2. auto. Defined.
```

```
ruth_sec_ans =
{| ruth_sec := alan;
  ruth_dept := sales;
  eq_ruth_dept := erefl sales;
  eq_ruth_sec := erefl alan |}
```

Queries as types, answers as terms

Knowledge schemata

Department.Secr.WorksIn = Department Employee.Mngr.WorksIn = Employee.WorksIn

[adapted from Fong & Spivak 2018]

```
Theorem eq_sec : forall d, works (sec d) = d.
Proof. destruct d; auto. Qed.
Theorem eq_mgr : forall e, works (mgr e) = works e.
```

Proof. destruct e; auto. Qed.

Knowledge schemata

We may use **Structure** to organize data about a schema,

```
Structure company : Type := Build_company
{ employee : Set;
  department : Set;
  works_in : employee -> department;
  secretary : department -> employee;
  manager : employee -> employee;
  eq_secretary : forall d, works_in (secretary d) = d;
  eq_manager : forall e, works_in (manager e) = works_in e }.
```

declare an instance of the schema,

Definition acme := Build_company empl dept works sec mgr eq_sec eq_mgr.

and prove theorems about all instances of the schema.

```
Theorem sec_mgr : forall (c : company) (d : department c),
    works_in c (manager c (secretary c d)) = d.
Proof. intros c d. rewrite <- eq_secretary. rewrite eq_manager. auto. Qed.</pre>
```

Mathematical structures

We may use **Structure** to organize data about a mathematical structure,

```
Structure abGrp : Type := AbGrp {
  carrier : Type; zero : carrier;
  opp : carrier → carrier; add : carrier → carrier → carrier;
  add_assoc : associative add; add_comm : commutative add;
  zero_idl : left_id zero add; add_oppl : left_inverse zero opp add }.
```

declare an instance of the mathematical structure,

Definition Z_abGrp := AbGrp Z Z0 Z1 Zopp Zadd

and prove theorems about all instances of the mathematical structure.

Unification

How can a proof assistant know how to apply

```
Theorem sec_mgr : forall (c : company) (d : department c),
  works_in c (manager c (secretary c d)) = d.
```

towards simplifying works (mgr (sec d)) to a department d unless we explicitly specify works, mgr, sec as fields to of an instance of company?

How can a proof assistant know how to apply

```
Theorem subr0 : ∀ (aG : abGrp) (x : carrier aG),
add aG x (opp aG zero) = x.
```

towards simplifying (Zadd z (Zopp Z0)) to an integer z unless we explicitly specify Zadd, Zopp, Z0 as fields of an instance of abGrp?

This is a problem in *unification*.

works_in ?c = works
add ?aG = Zadd

Canonical instances

As we build complex hierarchies of structures in knowledge graphs, users should not be burdened by the tracking of structural information.

One solution is to declare some instances of a structure as *canonical*, e.g. the set of integers can be viewed as an additive or multiplicative monoid, but we could declare the additive monoid instance as canonical.

```
Definition acme := Build_company empl dept works sec mgr eq_sec eq_mgr.
Canonical acme : company.
Definition Z_abGrp := AbGrp Z Z0 Z1 Zopp Zadd ....
Canonical Z_abGrp : abGrp.
```

Coq adds each field of a canonical instance to a look-up table for unification.

```
employee ?c = empl => ? = acme
department ?c = dept => ? = acme
...
```

(We could also use type classes in Coq but I'm agnostic.)

Mahboubi, Assia, and Enrico Tassi. "Canonical structures for the working Coq user." In *International Conference on Interactive Theorem Proving*, pp. 19-34. Springer, Berlin, Heidelberg, 2013.

Verification vs enumeration

Given finite type T (e.g. the world population) and t : T, suppose we are interested in the subtype S_t (e.g. the siblings of t).

Verification (e.g. checking that s : T is a sibling) is easier than synthesis (e.g. finding any sibling), which is easier than enumeration (e.g. finding all siblings).

Verification specified with Boolean predicates $p: (t:T) \rightarrow (s:T) \rightarrow bool$. Enumeration specified with enumeration functions $f: (t:T) \rightarrow bool$. Equivalence between predicate and enumeration $pts = true \leftrightarrow s \in ft$.

Of course, given a predicate p, we could enumerate by evaluating p on all of T. However, scheduling [Patterson 2020] can give us more efficient enumerations. How to schedule by transporting between predicates and enumerations?

Transport by reflection

In the ssreflect library, the type reflect P b encodes the equivalence $P \leftrightarrow (b = \text{true})$.

Inductive reflect (P : Prop) : bool -> Prop :=
| ReflectT (p : P) : reflect P true
| ReflectF (np : ~ P) : reflect P false.

For example, this lemma states the equivalence $(b1 \land b2) \leftrightarrow (b1 \&\& b2 = true)$.

```
Lemma and P (b1 b2 : bool) : reflect (b1 / b2) (b1 && b2).
```

We apply the lemma to transport a proof of (a && b = true) to a proof of ab : a / b.

```
Lemma example a b :
    a && b ==> (a == b).
Proof.
    case: andP => [ab|nab].
```

Transport by reflection

We use the type (qreflect qt qe) to encode the equivalence between membership in a subtype ($n \ dt$) and membership in a list ($n \ dt$).

Definition qreflect {qb : query_pred} (qt : query_subType qb)
 (qe : query_enum) := ∀ (n : node), reflect (n \of qt) (n \in qe).

Suppose we have relations R_1, R_2 and their enumerations $E_i(s) = \{ t \mid t R_i s \}$. Define relation R_3 by $u R_3 s \Leftrightarrow \exists t, (u R_2 t) \land (t R_1 s)$. Let $E_3(s) = \{ u \mid u R_3 s \}$. The next theorem says that $E_3(s)$ is the union of $E_2(t)$ over all $t \in E_1(s)$.

With more equivalences like qChainP, the proof assistant can derive enumerations for new queries by decomposing them into patterns and applying reflections.

Decentralized knowledge

In linked data, knowledge is not centralized in one database where we can derive inductive types.

```
Inductive empl :=
| alan
| ruth
| kris.
Inductive dept :=
| sales
| tech.
```


Moreover, access rights prevent a user from reading all available entries in the knowledge graph.

> **PREFIX** ent: <http://acme.com/entity#> **PREFIX** ont: <http://acme.com/ontology#>

Universe management

The universe of a user is thus built up by axiomatic types and terms in the same way a theory is built up in a logical framework.

Axiom	empl	•	Type.
Axiom	alan	:	empl.
Axiom	ruth	:	empl.
Axiom	kris	:	empl.
Axiom	dept		Type.
Axiom	sales		dept.
Axiom	tech	:	dept.

Modules are imported to construct types on top of this user universe. Users may share universes and branch off at different levels. Polymorphism is necessary for localizing types at different levels.

Conclusion

Program synthesis

Key research areas to fulfill the dream of using proof assistants for program synthesis.

- Transport
- Unification
- Theory management
- Universe management

Diversity, equity, inclusion

Information is power. Code is access to power.

People are stripped of power by inability to code, or inability to control information because of code (e.g. platforms for social networks, gig economy).

- Diversity of voices, products, services
- Equal access to resources and growth
- Inclusion in supportive communities

Questions?

https://shaoweilin.github.io/