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JOURNEY

▶ 2008. Dream - "Never separate Memory from Compute."
▶ 2009. Singular learning (with Bernd Sturmfels, Mathias Drton, Sumio Watanabe)

▶ 2011. SLT - "All you need is relative information."
▶ 2012. Spiking networks (with Chris Hillar)

▶ 2016. AlphaGo - "Inference without alignment is broke or brute."
▶ 2017. Dependent type theory and program synthesis

▶ 2020. DTT - "Information/energy is constructive."
▶ 2021. Category theory and information cohomology (with Chris Hillar)
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PROJECTS

1. Information Cohomology. (today; with Chris Hillar, Tai-Danae Bradley)

2. Spiking Networks. (today; with Chris Hillar, Sarah Marzen)

3. Program Synthesis. (inference with alignment)

• Domain-specific languages for LLMs and RLs
• Categorical proof assistants and tactics
• Generalized algebraic theories and type-classes

Topos Institute is hiring!
(shaowei@topos.institute)
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STATE DENSITY

Level sets of relative information H(s) unlock everything else.

1Jesse Hoogland, "Physics I: The Thermodynamics of Learning",Singular Learning Theory and Alignment Summit 2023.
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Part I

SPIKING NEURAL NETWORKS
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STATISTICAL LEARNING

Setup.
▶ Observed variable X
▶ Hidden variable Z
▶ True distribution q(X)

▶ Model distribution pθ(X,Z) parametrized by θ

▶ Marginal distribution pθ(X) =
∫

pθ(X,Z)dZ

Goal.
▶ Find θ minimizing

Iq∥pθ(X) =

∫
q(X) log

q(X)

pθ(X)
dX
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VARIATIONAL INFERENCE

Trick.
▶ Introduce distribution q(Z|X) as extra parameter for optimization
▶ Discriminative distribution q(X,Z) = q(Z|X)q(X)

▶ Generative distribution pθ(X,Z) = pθ(X|Z)pθ(Z) (usually)
▶ Minimize

Iq∥pθ(X,Z) =
∫

q(X,Z) log
q(X,Z)
pθ(X,Z)

dXdZ

by alternatingly varying q while holding pθ fixed and vice versa.

Variants.
▶ EM algorithm (Dempster-Laird-Rubin)2. Let q(Z|X) be pθ(Z|X) at each step of the optimization.
▶ em algorithm (Amari)3. Let q(Z|X) be parametrized qλ(Z|X) and alternatingly optimize θ and λ.
▶ Amari’s em algorithm is biologically more plausible because Bayesian inversion is hard!

2Dempster, A.P., N.M. Laird, and D.B. Rubin. "Maximum likelihood from incomplete data via the EM algorithm." JRSS 39, no. 1 (1977): 1-22.
3Amari, Shun-ichi. "Information geometry of the EM and em algorithms for neural networks." Neural networks 8, no. 9 (1995): 1379-1408.
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TIME SERIES WITH MEMORY

▶ Time. Assume discrete time for simplicity.
▶ Environment. X1,X2, . . .. Immutable. Possibly partially hidden.
▶ Memory. Z1,Z2, . . .. Mutable. Not latent/hidden variables!

▶ Goal. Optimize use of limited memory for predicting environment.
▶ Objective. Minimize

lim
T→∞

1
T

Iq∥pθ(X1...T,Z1...T)
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INFORMATION CONSTRAINTS

Put different constraints on structure of q(Z1...T|X1...T) =
∏

k q(Zk+1|Z1...k,X1...T).
Let p∗ denote the resulting pθ that minimizes Iq∥pθ(X1...T,Z1...T).

▶ No constraints. q(Z1...T|X1...T) =
∏

k q(Zk+1|Z1...k,X1...T). Optimal Ifree = Iq∥p∗(X1...T).

▶ Online learning. q(Z1...T|X1...T) =
∏

k q(Zk+1|Z1...k,X1...k). Optimal Ionline > Ifree.

▶ Limited memory. q(Z1...T|X1...T) =
∏

k q(Zk+1|Zk,Xk). Optimal Imem > Ionline.
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RELATIVE INFORMATION RATE

▶ Assume limited memory, i.e. Markov process q(Z1...T|X1...T) =
∏

k q(Zk+1|Zk,Xk).
▶ Assume q has stationary distribution π̄. Let q̄ be same Markov process but with initial π̄.

▶ Using Kingman’s subadditive ergodic theory4 and under mild regularity conditions5,

lim
T→∞

1
T

Iq∥p(X1...T,Z1...T) = Iq̄∥p(Z2,X2|Z1,X1).

▶ In continuous-time, we get the relative information rate

lim
T→∞

1
T

Iq∥p(X1...T,Z1...T) =
d
dt

Iq̄∥p(X1...1+t,Z1...1+t)

∣∣∣∣
t=0

.

4https://en.wikipedia.org/wiki/Kingman%27s_subadditive_ergodic_theorem
5Brian G Leroux. "Maximum-likelihood estimation for hidden markov models." Stochastic processes and their applications, 40(1):127–143, 1992.
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STOCHASTIC APPROXIMATION

Setup. Parametric models qλ(Zn+1|Zn,Xn) and pθ(Zn+1,Xn+1|Zn,Xn).

Goal. Minimize conditional relative information Iq̄∥p(Z2,X2|Z1,X1).

Stochastic Approximation.6

1. Sample environment Xn+1 from true distribution q(Xn+1|Xn).
2. Sample memory Zn+1 from discriminatory distribution qλ(Zn+1|Zn,Xn).
3. Sample the generator gradient ∇θ Iq̄∥p(Z2,X2|Z1,X1) using Zn+1,Xn+1.
4. Sample the discriminator gradient ∇λ Iq̄∥p(Z2,X2|Z1,X1) using Zn+1,Xn+1.
5. Update parameters θ, λ and repeat until convergence.

6Robbins, Herbert, and Sutton Monro. "A stochastic approximation method." The annals of mathematical statistics (1951): 400-407.
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STOCHASTIC GRADIENTS

Generator.

∇θ Iq̄∥p(Z2,X2|Z1,X1)

= lim
T→∞

Eq [∇θ log pθ(ZT+1,XT+1|ZT,XT)]

Discriminator.

∇λ Iq̄∥p(Z2,X2|Z1,X1)

= lim
T→∞

Eq

[( T∑
i=1

∇λ log qλ(Zi+1|Zi,Xi)
)

︸ ︷︷ ︸
momentum

log
qλ(ZT+1,XT+1|ZT,XT)

pθ(ZT+1,XT+1|ZT,XT)︸ ︷︷ ︸
surprise

]

▶ Use discounted momentum (scale summands by some βT−i with β<1) for numerical stability.
▶ Same as reinforcement learning with surprise as reward (policy gradient for average reward)7.

7Karimi, Belhal, Blazej Miasojedow, Eric Moulines, and Hoi-To Wai. "Non-asymptotic analysis of biased stochastic approximation scheme." PMLR 2019 pp. 1944-1974.
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SPIKING NEURAL NETWORKS

▶ Work over continuous-time instead of discrete-time, but concepts are the same.

▶ Optimize relative information rate instead of conditional relative information.

▶ Many neuron models possible8.
• Neuron spikes are described as Poisson processes controlled by cell potentials.
• Potentials increase with incoming spikes, and reset with outgoing spikes.
• Cell potentials and synaptic credit assignments decay with time.

▶ Stochastic approximation explains the triplet rule in spike-time-dependent plasticity!

▶ Discriminator surprise seems to explain dopamine-based neuromodulation!

▶ Discounted momentum seems to explain neuronal adaptation and refractoriness!

8https://shaoweilin.github.io/posts/2021-06-05-spiking-neural-networks/

12 / 23

https://shaoweilin.github.io/posts/2021-06-05-spiking-neural-networks/


Part II

INFORMATION COHOMOLOGY
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BIG PICTURE

▶ For simplicity, consider measures (need not be probabilistic) over finite sets.

▶ Think of the comparison between a model measure P and a true measure Q
as a functor F : P → Q between categories of weighted contexts and substitutions.

▶ We want to a measure of how good F is at modeling truth at each morphism f in P.
Define relative information as a functor IF : P → R, where R is the category of dual numbers.

▶ Given f : X → Y in P, let Pf be the subcategory containing just f .
The functors Pf → R which are localized at Q, form an algebra A.
Derivations (1-cocycles) δ : A → A are generated by relative information!
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RELATIVE INFORMATION FOR MEASURES

▶ Let p and q be two measures on a finite set X with the same total measure∑
x∈X

p(x) =
∑
x∈X

q(x).

▶ Let π : Y → X be a measure-preserving map,
i.e. there exists p(y|x) for each y ∈ Y and x = π(y) such that p(y) = p(y|x)p(x) and∑

y∈π−1(x)

p(y|x) = 1 for all x,

and similarly for q.

▶ Define the (conditional) relative information to be

Ip⇝q(π) =
∑
x∈X

q(x)
∑

y∈π−1(x)

q(y|x) log q(y|x)
p(y|x)

.
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CONTEXTS AND SUBSTITUTIONS

▶ A context is a finite set.

▶ A substitution f : X → Y between contexts is a set map πf : Y → X,
together with conditional probabilities pf (y|x) ≥ 0 on Y for each x ∈ X,
such that pf (y|x) = 0 if π(y) ̸= x and

∑
y∈Y pf (y|x) = 1.

▶ Two substitutions f : X → Y and g : Y → Z compose with set maps and conditional probabilities

πg◦f = πf ◦ πg

pg◦f (z|x) = pg(z|y) pf (y|x).

▶ For each context X, there is an identity substitution id : X → X
with the identity set map πid and the conditional probability pid(x|x) = 1.

▶ A trivial context ∗ is a one-element set. Substitutions ∗ → X give probabilities on X.
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WEIGHTED CONTEXTS AND SUBSTITUTIONS

▶ A weighted context is a context X with a measure pX(x) on X.

▶ A weighted substitution f : X → Y is a substitution that is measure-preserving9, i.e.

pY(y) = pf (y|x)pX(x) for all x, y.

▶ Addition X ⊕ Y of weighted contexts is the disjoint union of underlaying sets and measures.
Addition f ⊕ g of weighted substitutions is the disjoint union of underlying maps and
conditionals. Check that the disjoint union of conditionals is again a conditional.

▶ Multiplication X ⊗ Y of weighted contexts is the product of underlying sets and measures.
Multiplication f ⊗ g of weighted substitutions is the product of the underlying maps and
conditionals. Check that the product of conditionals is again a conditional.

9Baez, John C., and Tobias Fritz. "A Bayesian characterization of relative entropy." arXiv preprint arXiv:1402.3067 (2014).
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DUAL NUMBERS

▶ The rig (semiring) of duals is R = R≥0[ε]/⟨ε2⟩, where ε is an infinitesimal with ε2 = 0.
Denote addition by ⊕ and multiplication by ⊗.

▶ We may also use the extended duals R∞ = R≥0,∞[ε]/⟨ε2⟩, where R≥0,∞ has
∞+ a = ∞ for all a; ∞× a = ∞ for all a ̸= 0; and ∞× 0 = 0.

▶ We also think of the duals (extended duals) as a category, where the objects are reals (extended
reals) a, and the morphisms are also reals (extended reals) b : a → a that compose by addition.

▶ Check that addition ⊕ and multiplication ⊗ extends to the objects and morphisms.
In particular, if b : a → a and d : c → c, then

b ⊗ d : (a × c) → (a × c)
b ⊗ d = a × d + b × c
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INFORMATION CATEGORIES AND RELATIVE INFORMATION

▶ An information category is a rig category (with ⊕,⊗) of weighted contexts and substitutions.
Think of an information category as a joint distribution on a collection of random variables.

▶ Given information categories P ("model distribution") and Q ("true distribution"),
we compare them using a functor F : P → Q.

▶ For each context X in P, we define the total measure

IF(X) =
∑
x∈X

p(x) =
∑
x∈X

q(x)

▶ For each morphism f : X → Y in P, we define the conditional relative information

IF(f ) =
∑
x∈X

q(x)
∑

y∈π−1(x)

q(y|x) log q(y|x)
p(y|x)

▶ We call IF the relative information.
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RELATIVE INFORMATION AS A FUNCTOR

▶ Relative information is a functor IF : P → R from the information category P to the dual
numbers R localized at Q.

▶ Total measure: let X and Y be objects in P.

• Measure preservation. Morphisms in R are self-loops a → a,
so we must have IF(X) = IF(Y) for all morphisms f : X → Y in P.

• Sum rule. Measures of disjoint unions are sums of measures.

IF(X ⊕ Y) = IF(X)⊕ IF(Y)

• Product rule. Measures of products are products of measures.

IF(X ⊗ Y) = IF(X)⊗ IF(Y)
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RELATIVE INFORMATION AS A FUNCTOR

▶ Relative information is a functor IF : P → R from the information category P to the dual
numbers R localized at Q.

▶ Conditional relative information: let f : X → Y, g : Y → Z, h : X′ → Y′ be morphisms in P.

• Chain rule. Information of compositions are sums of information.

IF(g ◦ f ) = IF(g) + IF(f ).

• Sum rule. Information of disjoint unions are sums of information.

IF(f ⊕ h) = IF(f )⊕ IF(h) = IF(f ) + IF(h)

• Product rule. Information of products behave like derivations. 10

IF(f ⊗ h) = IF(f )⊗ IF(h) = IF(X)× IF(h) + IF(f )× IF(X′)

• Localization. If p(y|x) = q(y|x) for all x, y, then IF(f ) = 0.

10Bradley, Tai-Danae. "Entropy as a topological operad derivation." Entropy 23, no. 9 (2021): 1195.
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RELATIVE INFORMATION AS COHOMOLOGY

▶ For each f : X → Y in P, let Pf be the subcategory with objects X,Y and morphism f .

▶ The functors Pf → R which are localized at Q, form an algebra A.

▶ Linear maps δ : A → A satisfy all the conditions on the last two slides, except for the product
rule of conditional relative information. Relative information IF is one such linear map.

▶ Conjecture. Relative information IF is a cocycle in the Hochschild cohomology of A.

▶ Questions.
1. What are the higher-order cocycles? 11

2. Generalize to other kinds of information categories?
3. State densities? Partition functions? Zeta functions?

11Baudot, Pierre, and Daniel Bennequin. "The homological nature of entropy." Entropy 17, no. 5 (2015): 3253-3318.
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Thank you!

shaoweilin.github.io
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