ALL YOU NEED IS RELATIVE INFORMATION

Shaowei Lin

20230626

Singular Learning Theory and Alignment Summit

JOURNEY

- ▶ 2008. Dream "Never separate Memory from Compute."
- ▶ 2009. Singular learning (with Bernd Sturmfels, Mathias Drton, Sumio Watanabe)
- ▶ **2011**. SLT "All you need is *relative* information."
- ▶ 2012. Spiking networks (with Chris Hillar)
- ▶ 2016. AlphaGo "Inference without alignment is broke or brute."
- ▶ 2017. Dependent type theory and program synthesis
- ▶ 2020. DTT "Information/energy is constructive."
- ▶ 2021. Category theory and information cohomology (with Chris Hillar)

PROJECTS

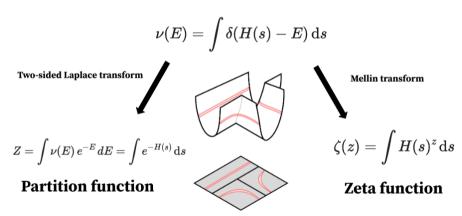
- 1. **Information Cohomology**. (today; with Chris Hillar, Tai-Danae Bradley)
- 2. **Spiking Networks**. (today; with Chris Hillar, Sarah Marzen)
- 3. **Program Synthesis**. (inference with alignment)
 - Domain-specific languages for LLMs and RLs
 - Categorical proof assistants and tactics
 - Generalized algebraic theories and type-classes

Topos Institute is hiring! (shaowei@topos.institute)

STATE DENSITY

Level sets of relative information H(s) unlock everything else.

Density of states



¹Jesse Hoogland, "Physics I: The Thermodynamics of Learning", Singular Learning Theory and Alignment Summit 2023.

Part I

SPIKING NEURAL NETWORKS

STATISTICAL LEARNING

Setup.

- ▶ Observed variable *X*
- ► Hidden variable Z
- ightharpoonup True distribution q(X)
- ▶ Model distribution $p_{\theta}(X, Z)$ parametrized by θ
- ► Marginal distribution $p_{\theta}(X) = \int p_{\theta}(X, Z) dZ$

Goal.

Find θ minimizing

$$I_{q||p_{\theta}}(X) = \int q(X) \log \frac{q(X)}{p_{\theta}(X)} dX$$

VARIATIONAL INFERENCE

Trick.

- ▶ Introduce distribution q(Z|X) as extra parameter for optimization
- ▶ *Discriminative* distribution q(X, Z) = q(Z|X)q(X)
- *Generative* distribution $p_{\theta}(X, Z) = p_{\theta}(X|Z)p_{\theta}(Z)$ (usually)
- ► Minimize

$$I_{q||p_{\theta}}(X,Z) = \int q(X,Z) \log \frac{q(X,Z)}{p_{\theta}(X,Z)} dXdZ$$

by alternatingly varying q while holding p_{θ} fixed and vice versa.

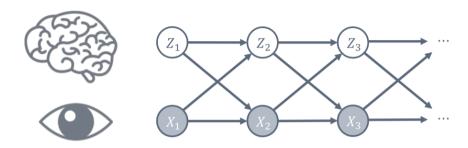
Variants.

- ► *EM algorithm* (Dempster-Laird-Rubin)². Let q(Z|X) be $p_{\theta}(Z|X)$ at each step of the optimization.
- *em algorithm* (Amari)³. Let q(Z|X) be parametrized $q_{\lambda}(Z|X)$ and alternatingly optimize θ and λ .
- ▶ Amari's *em* algorithm is biologically more plausible because **Bayesian inversion is hard!**

²Dempster, A.P., N.M. Laird, and D.B. Rubin. "Maximum likelihood from incomplete data via the EM algorithm." JRSS 39, no. 1 (1977): 1-22.

³ Amari, Shun-ichi. "Information geometry of the EM and em algorithms for neural networks." Neural networks 8, no. 9 (1995): 1379-1408.

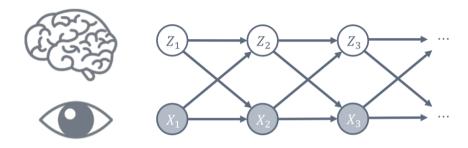
TIME SERIES WITH MEMORY



- ▶ **Time.** Assume discrete time for simplicity.
- **Environment**. X_1, X_2, \dots Immutable. Possibly partially hidden.
- ▶ **Memory**. $Z_1, Z_2, ...$ Mutable. Not latent/hidden variables!
- ▶ **Goal**. Optimize use of limited memory for predicting environment.
- **▶ Objective.** Minimize

$$\lim_{T\to\infty}\frac{1}{T}I_{q\parallel p_{\theta}}(X_{1...T},Z_{1...T})$$

INFORMATION CONSTRAINTS



Put different constraints on structure of $q(Z_{1...T}|X_{1...T}) = \prod_k q(Z_{k+1}|Z_{1...k}, X_{1...T})$. Let p^* denote the resulting p_θ that minimizes $I_{q||p_\theta}(X_{1...T}, Z_{1...T})$.

- ▶ No constraints. $q(Z_{1...T}|X_{1...T}) = \prod_k q(Z_{k+1}|Z_{1...k}, X_{1...T})$. Optimal $I_{\text{free}} = I_{q||p^*}(X_{1...T})$.
- ▶ Online learning. $q(Z_{1...T}|X_{1...T}) = \prod_k q(Z_{k+1}|Z_{1...k}, X_{1...k})$. Optimal $I_{\text{online}} > I_{\text{free}}$.
- ▶ **Limited memory.** $q(Z_{1...T}|X_{1...T}) = \prod_k q(Z_{k+1}|Z_k, X_k)$. Optimal $I_{\text{mem}} > I_{\text{online}}$.

RELATIVE INFORMATION RATE

- ▶ Assume limited memory, i.e. Markov process $q(Z_{1...T}|X_{1...T}) = \prod_k q(Z_{k+1}|Z_k, X_k)$.
- ▶ Assume *q* has stationary distribution $\bar{\pi}$. Let \bar{q} be same Markov process but with initial $\bar{\pi}$.
- ▶ Using Kingman's subadditive ergodic theory⁴ and under mild regularity conditions⁵,

$$\lim_{T \to \infty} \frac{1}{T} I_{q \parallel p}(X_{1...T}, Z_{1...T}) = I_{\bar{q} \parallel p}(Z_2, X_2 | Z_1, X_1).$$

▶ In continuous-time, we get the *relative information rate*

$$\lim_{T\to\infty} \frac{1}{T} I_{q||p}(X_{1...T}, Z_{1...T}) = \left. \frac{d}{dt} I_{\bar{q}||p}(X_{1...1+t}, Z_{1...1+t}) \right|_{t=0}.$$

⁴https://en.wikipedia.org/wiki/Kingman%27s subadditive ergodic theorem

⁵Brian G Leroux. "Maximum-likelihood estimation for hidden markov models." Stochastic processes and their applications, 40(1):127–143, 1992.

STOCHASTIC APPROXIMATION

Setup. Parametric models $q_{\lambda}(Z_{n+1}|Z_n,X_n)$ and $p_{\theta}(Z_{n+1},X_{n+1}|Z_n,X_n)$.

Goal. Minimize conditional relative information $I_{\bar{q}||p}(Z_2, X_2|Z_1, X_1)$.

Stochastic Approximation.⁶

- 1. Sample environment X_{n+1} from true distribution $q(X_{n+1}|X_n)$.
- 2. Sample memory Z_{n+1} from discriminatory distribution $q_{\lambda}(Z_{n+1}|Z_n,X_n)$.
- 3. Sample the generator gradient $\nabla_{\theta} I_{\bar{q}||p}(Z_2, X_2|Z_1, X_1)$ using Z_{n+1}, X_{n+1} .
- 4. Sample the discriminator gradient $\nabla_{\lambda} I_{\bar{q}||p}(Z_2, X_2|Z_1, X_1)$ using Z_{n+1}, X_{n+1} .
- 5. Update parameters θ , λ and repeat until convergence.

⁶Robbins, Herbert, and Sutton Monro. "A stochastic approximation method." The annals of mathematical statistics (1951): 400-407.

STOCHASTIC GRADIENTS

Generator.

$$\nabla_{\theta} I_{\bar{q}||p}(Z_2, X_2|Z_1, X_1)$$

$$= \lim_{T \to \infty} \mathbb{E}_q \left[\nabla_{\theta} \log p_{\theta}(Z_{T+1}, X_{T+1}|Z_T, X_T) \right]$$

Discriminator.

$$\nabla_{\lambda} I_{\bar{q}||p}(Z_2, X_2|Z_1, X_1)$$

$$= \lim_{T \to \infty} \mathbb{E}_q \left[\underbrace{\left(\sum_{i=1}^T \nabla_{\lambda} \log q_{\lambda}(Z_{i+1}|Z_i, X_i) \right)}_{\text{momentum}} \underbrace{\log \frac{q_{\lambda}(Z_{T+1}, X_{T+1}|Z_T, X_T)}{p_{\theta}(Z_{T+1}, X_{T+1}|Z_T, X_T)} \right]}_{\text{surprise}}$$

- ▶ Use discounted momentum (scale summands by some β^{T-i} with β <1) for numerical stability.
- ► Same as reinforcement learning with surprise as reward (policy gradient for average reward)⁷.

⁷Karimi, Belhal, Blazej Miasojedow, Eric Moulines, and Hoi-To Wai. "Non-asymptotic analysis of biased stochastic approximation scheme." PMLR 2019 pp. 1944-1974.

SPIKING NEURAL NETWORKS

- ▶ Work over *continuous-time* instead of discrete-time, but concepts are the same.
- ▶ Optimize *relative information rate* instead of conditional relative information.
- ► Many neuron models possible⁸.
 - Neuron spikes are described as Poisson processes controlled by cell potentials.
 - Potentials increase with incoming spikes, and reset with outgoing spikes.
 - Cell potentials and synaptic credit assignments decay with time.
- Stochastic approximation explains the triplet rule in spike-time-dependent plasticity!
- ▶ Discriminator surprise seems to explain dopamine-based neuromodulation!
- ▶ Discounted momentum seems to explain neuronal adaptation and refractoriness!

⁸https://shaoweilin.github.io/posts/2021-06-05-spiking-neural-networks/

Part II INFORMATION COHOMOLOGY

BIG PICTURE

- ▶ For simplicity, consider measures (need not be probabilistic) over finite sets.
- ▶ Think of the comparison between a model measure \mathbb{P} and a true measure \mathbb{Q} as a functor $F: P \to Q$ between categories of *weighted contexts and substitutions*.
- ▶ We want to a measure of how good F is at modeling truth at each morphism f in P. Define *relative information* as a functor $I_F : P \to \mathcal{R}$, where \mathcal{R} is the category of *dual numbers*.
- ► Given $f: X \to Y$ in P, let P_f be the subcategory containing just f. The functors $P_f \to \mathcal{R}$ which are localized at Q, form an algebra A. Derivations (1-cocycles) $\delta: A \to A$ are generated by relative information!

RELATIVE INFORMATION FOR MEASURES

Let *p* and *q* be two measures on a finite set *X* with the same total measure

$$\sum_{x \in X} p(x) = \sum_{x \in X} q(x).$$

Let $\pi: Y \to X$ be a measure-preserving map, i.e. there exists p(y|x) for each $y \in Y$ and $x = \pi(y)$ such that p(y) = p(y|x)p(x) and

$$\sum_{y \in \pi^{-1}(x)} p(y|x) = 1 \quad \text{for all } x,$$

and similarly for *q*.

▶ Define the (conditional) relative information to be

$$I_{p \leadsto q}(\pi) = \sum_{x \in X} q(x) \sum_{y \in \pi^{-1}(x)} q(y|x) \log \frac{q(y|x)}{p(y|x)}.$$

CONTEXTS AND SUBSTITUTIONS

- ► A context is a finite set.
- ▶ A *substitution* $f: X \to Y$ between contexts is a set map $\pi_f: Y \to X$, together with conditional probabilities $p_f(y|x) \ge 0$ on Y for each $x \in X$, such that $p_f(y|x) = 0$ if $\pi(y) \ne x$ and $\sum_{y \in Y} p_f(y|x) = 1$.
- ▶ Two substitutions $f: X \to Y$ and $g: Y \to Z$ compose with set maps and conditional probabilities

$$\pi_{g \circ f} = \pi_f \circ \pi_g$$

$$p_{g \circ f}(z|x) = p_g(z|y) p_f(y|x).$$

- ► For each context X, there is an *identity* substitution id : $X \to X$ with the identity set map π_{id} and the conditional probability $p_{id}(x|x) = 1$.
- A *trivial context* * is a one-element set. Substitutions * \rightarrow X give probabilities on X.

WEIGHTED CONTEXTS AND SUBSTITUTIONS

- ▶ A *weighted* context is a context X with a measure $p_X(x)$ on X.
- ▶ A *weighted* substitution $f: X \to Y$ is a substitution that is measure-preserving⁹, i.e.

$$p_Y(y) = p_f(y|x)p_X(x)$$
 for all x, y .

- Addition $X \oplus Y$ of weighted contexts is the disjoint union of underlaying sets and measures. Addition $f \oplus g$ of weighted substitutions is the disjoint union of underlying maps and conditionals. Check that the disjoint union of conditionals is again a conditional.
- ▶ Multiplication $X \otimes Y$ of weighted contexts is the product of underlying sets and measures. Multiplication $f \otimes g$ of weighted substitutions is the product of the underlying maps and conditionals. Check that the product of conditionals is again a conditional.

⁹Baez, John C., and Tobias Fritz. "A Bayesian characterization of relative entropy." arXiv preprint arXiv:1402.3067 (2014).

DUAL NUMBERS

- ▶ The rig (semiring) of *duals* is $\mathcal{R} = \mathbb{R}_{\geq 0}[\varepsilon]/\langle \varepsilon^2 \rangle$, where ε is an infinitesimal with $\varepsilon^2 = 0$. Denote addition by \oplus and multiplication by \otimes .
- ▶ We may also use the *extended duals* $\mathcal{R}_{\infty} = \mathbb{R}_{\geq 0,\infty}[\varepsilon]/\langle \varepsilon^2 \rangle$, where $\mathbb{R}_{\geq 0,\infty}$ has $\infty + a = \infty$ for all $a \neq 0$; and $\infty \times 0 = 0$.
- ▶ We also think of the duals (extended duals) as a category, where the objects are reals (extended reals) a, and the morphisms are also reals (extended reals) b : $a \rightarrow a$ that compose by addition.
- ► Check that addition \oplus and multiplication \otimes extends to the objects and morphisms. In particular, if $b: a \to a$ and $d: c \to c$, then

$$b \otimes d : (a \times c) \rightarrow (a \times c)$$

 $b \otimes d = a \times d + b \times c$

Information Categories and Relative Information

- An *information category* is a *rig* category (with \oplus , \otimes) of weighted contexts and substitutions. Think of an information category as a joint distribution on a collection of random variables.
- ▶ Given information categories P ("model distribution") and Q ("true distribution"), we compare them using a functor $F : P \to Q$.
- ▶ For each context *X* in *P*, we define the *total measure*

$$I_F(X) = \sum_{x \in X} p(x) = \sum_{x \in X} q(x)$$

▶ For each morphism $f: X \to Y$ in P, we define the *conditional* relative information

$$I_F(f) = \sum_{x \in X} q(x) \sum_{y \in \pi^{-1}(x)} q(y|x) \log \frac{q(y|x)}{p(y|x)}$$

 \blacktriangleright We call I_F the relative information.

RELATIVE INFORMATION AS A FUNCTOR

- ▶ Relative information is a functor $I_F : P \to \mathcal{R}$ from the information category P to the dual numbers \mathcal{R} localized at Q.
- ▶ Total measure: let *X* and *Y* be objects in *P*.
 - **Measure preservation**. Morphisms in \mathcal{R} are self-loops $a \to a$, so we must have $I_F(X) = I_F(Y)$ for all morphisms $f : X \to Y$ in P.
 - Sum rule. Measures of disjoint unions are sums of measures.

$$I_F(X \oplus Y) = I_F(X) \oplus I_F(Y)$$

• Product rule. Measures of products are products of measures.

$$I_F(X \otimes Y) = I_F(X) \otimes I_F(Y)$$

RELATIVE INFORMATION AS A FUNCTOR

- ▶ Relative information is a functor $I_F : P \to \mathcal{R}$ from the information category P to the dual numbers \mathcal{R} localized at Q.
- ▶ Conditional relative information: let $f: X \to Y, g: Y \to Z, h: X' \to Y'$ be morphisms in P.
 - **Chain rule**. Information of compositions are sums of information.

$$I_F(g \circ f) = I_F(g) + I_F(f).$$

• **Sum rule**. Information of disjoint unions are sums of information.

$$I_F(f \oplus h) = I_F(f) \oplus I_F(h) = I_F(f) + I_F(h)$$

• **Product rule**. Information of products behave like *derivations*. ¹⁰

$$I_F(f \otimes h) = I_F(f) \otimes I_F(h) = I_F(X) \times I_F(h) + I_F(f) \times I_F(X')$$

• Localization. If p(y|x) = q(y|x) for all x, y, then $I_F(f) = 0$.

¹⁰Bradley, Tai-Danae. "Entropy as a topological operad derivation." Entropy 23, no. 9 (2021): 1195.

RELATIVE INFORMATION AS COHOMOLOGY

- ▶ For each $f: X \to Y$ in P, let P_f be the subcategory with objects X, Y and morphism f.
- ▶ The functors $P_f \to \mathcal{R}$ which are localized at Q, form an algebra A.
- ▶ Linear maps $\delta : A \to A$ satisfy all the conditions on the last two slides, except for the product rule of conditional relative information. Relative information I_F is one such linear map.
- **Conjecture**. Relative information I_F is a cocycle in the Hochschild cohomology of A.
- Questions.
 - 1. What are the higher-order cocycles? ¹¹
 - 2. Generalize to other kinds of information categories?
 - 3. State densities? Partition functions? Zeta functions?

¹¹Baudot, Pierre, and Daniel Bennequin. "The homological nature of entropy." Entropy 17, no. 5 (2015): 3253-3318.

Thank you!

shaoweilin.github.io