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Part I

RELATIVE INFORMATION
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RELATIVE INFORMATION

▶ Given probability distributions q and p on a finite set X, the relative information (Kullback-Leibler
divergence, relative entropy) from p to q is

Iq∥p(X) =
∑
x∈X

q(x) log
q(x)
p(x)

.

▶ Given probability densities q and p on an uncountably infinite set X, the relative information is

Iq∥p(X) =

∫
q(x) log

q(x)
p(x)

dx.
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RELATIVE INFORMATION

Iq∥p(X) =
∑
x∈X

q(x) log
q(x)
p(x)

.

▶ Iq∥p(X) well-defined only when p(x) = 0 implies q(x) = 0 for all x (absolute continuity).

▶ Think of q as the reference distribution or true distribution, and we want to know the distance of
a model distribution p to the truth. This distance is not symmetric, i.e. Iq∥p(X) ̸= Ip∥q(X).

▶ For the rest of this talk, we will work with finite state spaces for simplicity, even though the
results are applicable to continuous state spaces as well as quantum state spaces.
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MAXIMUM LIKELIHOOD

▶ Let {p( · |ω), ω ∈ Ω} be a parametric model (a family of distributions) on X.

▶ Suppose we observe data x[n] = (x1, . . . , xn) ∈ Xn.

▶ Likelihood of data Ln(ω) =
∏

i p(xi|ω)
Log-likelihood of data ℓn(ω) = log Ln(ω) =

∑
i log p(xi|ω)

▶ Maximum likelihood estimate ω̂ = argmaxω ℓn(ω)
Optimize using gradient ascent with ℓ̇n(ω) =

∑
i

∂
∂ω log p(xi|ω).

▶ Problem. Overfitting the data.
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STOCHASTIC GRADIENT DESCENT

▶ Suppose we could minimize the relative information (despite not knowing q).

K(w) :=
∑

x

q(x) log
q(x)

p(x|ω)
.

▶ Optimize using gradient descent with

K̇(ω) = −
∑

x

q(x)
∂

∂ω
log p(x|ω).

▶ Estimate the gradient by sampling x from q (or data x[n]). Note similarity to ℓ̇n(ω).

̂̇K(ω) = − ∂

∂ω
log p(x|ω)

▶ Advantage. Tends to overfit less. Popular technique in deep learning.
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REAL LOG CANONICAL THRESHOLD

▶ Volume of tubular neighborhood V(ε) =
∫
ω:K(ω)<ε dω of relative information K(ω).

▶ Asymptotically as ε → 0, we have V(ε) ≈ Cελ.

▶ Using resolution of singularities, we can prove that λ is a positive rational number, known as the
real log canonical threshold1 of K(ω).

▶ Example. When K(ω) is the squared distance to a smooth manifold of codim d, then λ = d/2.

1Watanabe, Sumio. Algebraic geometry and statistical learning theory. Vol. 25. Cambridge university press, 2009.
6 / 26



BAYESIAN INFERENCE

▶ Let the belief on model parameters be given initially by the prior p(w).

▶ Suppose we observe data x[n] = (x1, . . . , xn) ∈ Xn.

▶ We update our belief to the posterior

p(w|x[n]) =
p(x[n]|w)p(w)

p(x[n])
=

p(x[n]|w)p(w)∫
p(x[n]|w)p(w)dw

.

▶ We infer new data points using the predictive distribution

p∗(x) := p(x|x[n]) =
∫

p(x|w)p(w|x[n])dw.
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GENERALIZATION ERROR

▶ Generalization error Gn of Bayesian inference is the relative information from predictive
distribution p∗(X) to the true distribution q(x).

Gn := Iq∥p∗(X) =
∑

x

q(x) log
q(x)
p∗(x)

▶ Let λ be the real log canonical threshold of the relative information

K(w) =
∑

x

q(x) log
q(x)

p(x|ω)
.

Theorem (Watanabe2)

E[Gn] =
λ

n
+ O(

1
n
)

2Watanabe, Sumio. Algebraic geometry and statistical learning theory. Vol. 25. Cambridge university press, 2009.
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CONDITIONAL RELATIVE INFORMATION

▶ Consider joint probabilities q(y, x) for (y, x) ∈ Y × X. Conditional probabilities are
q(y|x) = q(y, x)/q(x) when q(x) =

∑
y q(y, x) ̸= 0.

▶ Given distributions q, p on Y × X, the conditional relative information from p to q is

Iq∥p(Y|X) =
∑
x∈X

q(x)
∑
y∈Y

q(y|x) log q(y|x)
p(y|x)

.

▶ Important concept for variational inference, expectation-maximization algorithm.
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CONDITIONAL RELATIVE INFORMATION

▶ More generally, given a discrete measure q on Y × X, define q(x) :=
∑

y q(y, x) and
q(y|x) := q(y, x)/q(x). Let Tq :=

∑
y,x q(y, x) denote the total measure.

▶ Given measures q, p on Y × X such that Tp = Tq, the conditional relative information is

Iq∥p(Y|X) =
∑
x∈X

q(x)
∑
y∈Y

q(y|x) log q(y|x)
p(y|x)

.

▶ Normalizing Iq∥p(Y|X) by the total measure Tq gives the statistical relative information.

10 / 26



CHAIN RULE

Theorem (Chain Rule)

Iq∥p(Y × X) = Iq∥p(Y|X) + Iq∥p(X)

Proof.

Iq∥p(Y × X) =
∑
x,y

q(y, x) log
q(y, x)
p(y, x)

=
∑
x,y

q(y|x)q(x) log q(y|x)q(x)
p(y|x)p(x)

=
∑
x,y

q(y|x)q(x) log q(y|x)
p(y|x)

+
∑
x,y

q(y|x)q(x) log q(x)
p(x)

= Iq∥p(Y|X) + Iq∥p(X)
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SUMS AND PRODUCTS

▶ Suppose we have a measure p on X and a measure q on Y.

▶ The sum p + q is the measure on the disjoint union X + Y where (p + q)(x) = p(x) if x ∈ X, and
(p + q)(y) = q(y) if y ∈ Y.

▶ The product p × q is the measure on the Cartesian product X × Y where (p × q)(x, y) = p(x)q(y).

▶ Total measures satisfy the sum and product rules.

Tp+q = Tp + Tq

Tp×q = Tp × Tq
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SUMS AND PRODUCTS

▶ For relative information, we also have sum and product rules.

▶ For each i ∈ {1, 2}, let qi, pi be discrete measures on Yi × Xi with Tqi = Tpi .

Theorem (Sum Rule)

I(q1+q2)∥(p1+p2)(Y1 + Y2|X1 + X2) = Iq1∥p1(Y1|X1) + Iq2∥p2(Y2|X2)

Theorem (Product Rule)

I(q1×q2)∥(p1×p2)(Y1 × Y2|X1 × X2) = Tq2 · Iq1∥p1(Y1|X1) + Tq1 · Iq2∥p2(Y2|X2)
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AXIOMATIZATION OF RELATIVE INFORMATION

▶ We see that relative information satisfies the chain, sum and product rules.

▶ Under appropriate conditions, the only functions on probabilities that satisfy those rules are
scalar multiples of relative information. There are similar axiomatization results for classical
and quantum entropy. See papers below for more information.

• Baez, Fritz, Leinster. "A characterization of entropy in terms of information loss." Entropy 13(11), 2011.
• Baez, Fritz. "A Bayesian characterization of relative entropy." arXiv:1402.3067, 2014.
• Baudot, Bennequin. "The homological nature of entropy." Entropy 17(5), 2015.
• Vigneaux. "Information structures and their cohomology." arXiv:1709.07807, 2017.
• Bradley. "Entropy as a topological operad derivation." Entropy 23(9), 2021.
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Part II

DUAL NUMBERS
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DUAL NUMBERS

▶ The rig (semiring) of duals is R = R≥0[ε]/⟨ε2⟩, where ε is an infinitesimal with ε2 = 0.
Denote addition by + and multiplication by ×.

▶ We shall think of the rig of duals as a category R, where

• the nonnegative reals a ∈ R≥0 are objects;
• the duals a + bε ∈ R are morphisms from a to itself, i.e. loops;
• the morphisms compose by tangent addition (a + bε) ◦ (a + cε) = a + (b + c)ε;
• the dual a + 0ε ∈ R is the identity morphism from a to itself.

▶ Addition + and multiplication × of the duals give monoidal structures on R.

• (a + bε) + (c + dε) is the morphism (a + c) + (b + d)ε from the object a + c to itself.
• (a + bε)× (c + dε) is the morphism (ac) + (ad + bc)ε from the object ac to itself.

▶ The category R of duals is a rig category.
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INFORMATION POSETS

▶ For simplicity, we define information posets as special cases of information structures3.

▶ An information poset is a category where

• the objects are finite sets (measurable spaces);
• the morphisms are surjections (measurable surjections);
• there is at most one morphism between any two objects.
• there is a terminal object, a one-element set ∗.

▶ Disjoint union + and Cartesian product × of sets give monoidal structures.

• Given f : A → B and g : C → D, we have f + g : A + B → C + D.
• Given f : A → B and g : C → D, we have f × g : A × B → C × D.

▶ Information posets are rig categories.

3Juan Pablo Vigneaux. "Information structures and their cohomology." arXiv preprint arXiv:1709.07807, 2017.
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MEASURE FUNCTORS

▶ Let FinMeas be the category where

• the objects (X, µX) are finite sets equipped with a measure;
• the morphisms (Y, µY) → (X, µX) are measure-preserving maps,

i.e. the underlying set map f : Y → X satisfies µX(x) = µY(f−1(x)).

▶ Fix an information poset P. A functor q : P → FinMeas is a measure functor if it associates

• X in P to some (X, qX) in FinMeas where the underlying set is X;
• f : Y → X in P to some (Y, qY) → (X, qX) in FinMeas where the underlying set map is f .
• sums f1 + f2 : X1 + X2 → Y1 + Y2 to sums (X1 + X2, µX1 + µX2) → (Y1 + Y2, µY1 + µY2).
• products f1 × f2 : X1 × X2 → Y1 × Y2 to products (X1 × X2, µX1µX2) → (Y1 × Y2, µY1µY2).

▶ Given a measure functor q : P → FinMeas and a surjection f : Y → X, we define
for all y ∈ Y and x = f (y) ∈ X with qX(x) ̸= 0, the conditional probability

qf (y|x) = qY(y)/qX(x).
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RELATIVE INFORMATION AS A FUNCTOR

▶ Fix an information poset P and measure functors q, p : P → FinMeas.

▶ For each object X in P, define the total measure

Tq(X) =
∑
x∈X

qX(x);

▶ For each surjection f : Y → X in P, define the relative information

Iq∥p(f ) =
∑
x∈X

qX(x)
∑

y∈f−1(x)

qf (y|x) log
qf (y|x)
pf (y|x)

Theorem
Let Fq∥p : P → R be the mapping that associates each surjection f : Y → X in P
to the dual number Tq(X) + Iq∥p(f )ε in R. Then Fq∥p is a rig monoidal functor.
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RELATIVE INFORMATION AS A FUNCTOR

Proof Outline
Claims about total measure.

▶ Check that Fq∥p maps surjections f : Y → X in P to loops a → a in R, i.e.

Tq(Y) = Tq(X).

▶ Check that Fq∥p maps disjoint unions of objects in P to sums of reals in R, i.e.

Tq(X1 + X2) = Tq(X1) + Tq(X2).

▶ Check that Fq∥p maps Cartesian products of objects in P to products of reals in R, i.e.

Tq(X1 × X2) = Tq(X1)Tq(X2).

Indeed, the first follows because Tq(Y) and Tq(X) are total measures and f is measure-preserving.
The second and third claims follow from the sum rule and product rule for total measure.
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RELATIVE INFORMATION AS A FUNCTOR

Proof Outline
Claims about relative information.

▶ Check that Fq∥p maps compositions in P to tangent sums in R, i.e.

Iq∥p(f ◦ g) = Iq∥p(f ) + Iq∥p(g).

▶ Check that Fq∥p maps disjoint unions of morphisms in P to sums of duals in R, i.e.

Iq∥p(f1 + f2) = Iq∥p(f1) + Iq∥p(f2).

▶ Check that Fq∥p maps Cartesian products in P to products in R, i.e.

Iq∥p(f1 × f2) = Tq(X2) · Iq∥p(f1) + Tq(X1) · Iq∥p(f2).

Indeed, the claims follow from the chain, sum and product rules for relative information.
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WHY RELATIVE INFORMATION?

▶ Information is relative! Information is energy!

▶ Beautiful algebra, geometry and combinatorics!

▶ Generalized relative information as rig monoidal functors, as cohomology.

▶ It from bit! 4

4Wheeler, J.A. (1989). Information, physics, quantum: the search for links. Int Symp on Foundations of Quantum Mechanics. Tokyo: pp. 354-358.
5Jesse Hoogland, "Physics I: The Thermodynamics of Learning",Singular Learning Theory and Alignment Summit 2023.
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Thank you!

shaoweilin.github.io
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SIGMA COMPLEX

▶ Sigma complex6 - gluing together of sigma algebras along subalgebras.

6Kochen, Simon B. "A reconstruction of quantum mechanics." Quantum [Un] Speakables II: Half a Century of Bell’s Theorem (2017): 201-235.
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INFORMATION STRUCTURES

7Vigneaux, Juan Pablo. "Information cohomology of classical vector-valued observables." In Geometric Science of Information: 5th International Conference, GSI 2021, Paris,
France, July 21–23, 2021, Proceedings 5, pp. 537-546. Springer International Publishing, 2021.
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DERIVED COHOMOLOGY

8Vigneaux, Juan Pablo. "Information structures and their cohomology." arXiv preprint arXiv:1709.07807 (2017).
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