RELATIVE INFORMATION AND THE DUAL NUMBERS

Shaowei Lin
Topos Institute
(with Chris Hillar)

20231019
San Francisco State University
Algebra, Geometry and Combinatorics Seminar

Part I

Relative Information

Relative Information

- Given probability distributions q and p on a finite set X, the relative information (Kullback-Leibler divergence, relative entropy) from p to q is

$$
I_{q \| p}(X)=\sum_{x \in X} q(x) \log \frac{q(x)}{p(x)}
$$

- Given probability densities q and p on an uncountably infinite set X, the relative information is

$$
I_{q \| p}(X)=\int q(x) \log \frac{q(x)}{p(x)} d x
$$

Relative Information

$$
I_{q \| p}(X)=\sum_{x \in X} q(x) \log \frac{q(x)}{p(x)} .
$$

- $I_{q \| p}(X)$ well-defined only when $p(x)=0$ implies $q(x)=0$ for all x (absolute continuity).
- Think of q as the reference distribution or true distribution, and we want to know the distance of a model distribution p to the truth. This distance is not symmetric, i.e. $I_{q \| p}(X) \neq I_{p \| q}(X)$.
- For the rest of this talk, we will work with finite state spaces for simplicity, even though the results are applicable to continuous state spaces as well as quantum state spaces.

MAXIMUM LIKELIHOOD

- Let $\{p(\cdot \mid \omega), \omega \in \Omega\}$ be a parametric model (a family of distributions) on X.
- Suppose we observe data $x_{[n]}=\left(x_{1}, \ldots, x_{n}\right) \in X^{n}$.
- Likelihood of data $L_{n}(\omega)=\prod_{i} p\left(x_{i} \mid \omega\right)$

Log-likelihood of data $\ell_{n}(\omega)=\log L_{n}(\omega)=\sum_{i} \log p\left(x_{i} \mid \omega\right)$

- Maximum likelihood estimate $\hat{\omega}=\arg \max _{\omega} \ell_{n}(\omega)$

Optimize using gradient ascent with $\dot{\ell}_{n}(\omega)=\sum_{i} \frac{\partial}{\partial \omega} \log p\left(x_{i} \mid \omega\right)$.

- Problem. Overfitting the data.

Stochastic Gradient Descent

- Suppose we could minimize the relative information (despite not knowing q).

$$
K(w):=\sum_{x} q(x) \log \frac{q(x)}{p(x \mid \omega)}
$$

- Optimize using gradient descent with

$$
\dot{K}(\omega)=-\sum_{x} q(x) \frac{\partial}{\partial \omega} \log p(x \mid \omega)
$$

- Estimate the gradient by sampling x from q (or data $x_{[n]}$. Note similarity to $\dot{\ell}_{n}(\omega)$.

$$
\hat{\dot{K}}(\omega)=-\frac{\partial}{\partial \omega} \log p(x \mid \omega)
$$

- Advantage. Tends to overfit less. Popular technique in deep learning.

Real Log Canonical Threshold

- Volume of tubular neighborhood $V(\varepsilon)=\int_{\omega: K(\omega)<\varepsilon} d \omega$ of relative information $K(\omega)$.
- Asymptotically as $\varepsilon \rightarrow 0$, we have $V(\varepsilon) \approx C \varepsilon^{\lambda}$.
- Using resolution of singularities, we can prove that λ is a positive rational number, known as the real log canonical threshold ${ }^{1}$ of $K(\omega)$.
- Example. When $K(\omega)$ is the squared distance to a smooth manifold of codim d, then $\lambda=d / 2$.

[^0]
BAYESIAN INFERENCE

- Let the belief on model parameters be given initially by the prior $p(w)$.
- Suppose we observe data $x_{[n]}=\left(x_{1}, \ldots, x_{n}\right) \in X^{n}$.
- We update our belief to the posterior

$$
p\left(w \mid x_{[n]}\right)=\frac{p\left(x_{[n]} \mid w\right) p(w)}{p\left(x_{[n]}\right)}=\frac{p\left(x_{[n]} \mid w\right) p(w)}{\int p\left(x_{[n]} \mid w\right) p(w) d w}
$$

- We infer new data points using the predictive distribution

$$
p^{*}(x):=p\left(x \mid x_{[n]}\right)=\int p(x \mid w) p\left(w \mid x_{[n]}\right) d w
$$

GEnERALIZAtion Error

- Generalization error G_{n} of Bayesian inference is the relative information from predictive distribution $p^{*}(X)$ to the true distribution $q(x)$.

$$
G_{n}:=I_{q \| p^{*}}(X)=\sum_{x} q(x) \log \frac{q(x)}{p^{*}(x)}
$$

- Let λ be the real \log canonical threshold of the relative information

$$
K(w)=\sum_{x} q(x) \log \frac{q(x)}{p(x \mid \omega)}
$$

Theorem (Watanabe ${ }^{2}$)

$$
\mathbb{E}\left[G_{n}\right]=\frac{\lambda}{n}+O\left(\frac{1}{n}\right)
$$

Conditional Relative Information

- Consider joint probabilities $q(y, x)$ for $(y, x) \in Y \times X$. Conditional probabilities are $q(y \mid x)=q(y, x) / q(x)$ when $q(x)=\sum_{y} q(y, x) \neq 0$.
- Given distributions q, p on $Y \times X$, the conditional relative information from p to q is

$$
I_{q \| p}(Y \mid X)=\sum_{x \in X} q(x) \sum_{y \in Y} q(y \mid x) \log \frac{q(y \mid x)}{p(y \mid x)}
$$

- Important concept for variational inference, expectation-maximization algorithm.

Conditional Relative Information

- More generally, given a discrete measure q on $Y \times X$, define $q(x):=\sum_{y} q(y, x)$ and $q(y \mid x):=q(y, x) / q(x)$. Let $T_{q}:=\sum_{y, x} q(y, x)$ denote the total measure.
- Given measures q, p on $Y \times X$ such that $T_{p}=T_{q}$, the conditional relative information is

$$
I_{q \| p}(Y \mid X)=\sum_{x \in X} q(x) \sum_{y \in Y} q(y \mid x) \log \frac{q(y \mid x)}{p(y \mid x)}
$$

- Normalizing $I_{q \| p}(Y \mid X)$ by the total measure T_{q} gives the statistical relative information.

Chain Rule

Theorem (Chain Rule)

$$
I_{q \| p}(Y \times X)=I_{q \| p}(Y \mid X)+I_{q \| p}(X)
$$

Proof.

$$
\begin{aligned}
I_{q \| p}(Y \times X) & =\sum_{x, y} q(y, x) \log \frac{q(y, x)}{p(y, x)} \\
& =\sum_{x, y} q(y \mid x) q(x) \log \frac{q(y \mid x) q(x)}{p(y \mid x) p(x)} \\
& =\sum_{x, y} q(y \mid x) q(x) \log \frac{q(y \mid x)}{p(y \mid x)}+\sum_{x, y} q(y \mid x) q(x) \log \frac{q(x)}{p(x)}=I_{q \| p}(Y \mid X)+I_{q \| p}(X)
\end{aligned}
$$

Sums and Products

- Suppose we have a measure p on X and a measure q on Y.
- The sum $p+q$ is the measure on the disjoint union $X+Y$ where $(p+q)(x)=p(x)$ if $x \in X$, and $(p+q)(y)=q(y)$ if $y \in Y$.
- The product $p \times q$ is the measure on the Cartesian product $X \times Y$ where $(p \times q)(x, y)=p(x) q(y)$.
- Total measures satisfy the sum and product rules.

$$
\begin{aligned}
& T_{p+q}=T_{p}+T_{q} \\
& T_{p \times q}=T_{p} \times T_{q}
\end{aligned}
$$

Sums and Products

- For relative information, we also have sum and product rules.
- For each $i \in\{1,2\}$, let q_{i}, p_{i} be discrete measures on $Y_{i} \times X_{i}$ with $T_{q_{i}}=T_{p_{i}}$.

Theorem (Sum Rule)

$$
I_{\left(q_{1}+q_{2}\right) \|\left(p_{1}+p_{2}\right)}\left(Y_{1}+Y_{2} \mid X_{1}+X_{2}\right)=I_{q_{1} \| p_{1}}\left(Y_{1} \mid X_{1}\right)+I_{q_{2} \| p_{2}}\left(Y_{2} \mid X_{2}\right)
$$

Theorem (Product Rule)

$$
I_{\left(q_{1} \times q_{2}\right) \|\left(p_{1} \times p_{2}\right)}\left(Y_{1} \times Y_{2} \mid X_{1} \times X_{2}\right)=T_{q_{2}} \cdot I_{q_{1} \| p_{1}}\left(Y_{1} \mid X_{1}\right)+T_{q_{1}} \cdot I_{q_{2} \| p_{2}}\left(Y_{2} \mid X_{2}\right)
$$

Axiomatization of Relative Information

- We see that relative information satisfies the chain, sum and product rules.
- Under appropriate conditions, the only functions on probabilities that satisfy those rules are scalar multiples of relative information. There are similar axiomatization results for classical and quantum entropy. See papers below for more information.
- Baez, Fritz, Leinster. "A characterization of entropy in terms of information loss." Entropy 13(11), 2011.
- Baez, Fritz. "A Bayesian characterization of relative entropy." arXiv:1402.3067, 2014.
- Baudot, Bennequin. "The homological nature of entropy." Entropy 17(5), 2015.
- Vigneaux. "Information structures and their cohomology." arXiv:1709.07807, 2017.
- Bradley. "Entropy as a topological operad derivation." Entropy 23(9), 2021.

Part II
Dual Numbers

Dual Numbers

- The rig (semiring) of duals is $\mathcal{R}=\mathbb{R}_{\geq 0}[\varepsilon] /\left\langle\varepsilon^{2}\right\rangle$, where ε is an infinitesimal with $\varepsilon^{2}=0$. Denote addition by + and multiplication by \times.
- We shall think of the rig of duals as a category \mathbf{R}, where
- the nonnegative reals $a \in \mathbb{R}_{\geq 0}$ are objects;
- the duals $a+b \varepsilon \in \mathcal{R}$ are morphisms from a to itself, i.e. loops;
- the morphisms compose by tangent addition $(a+b \varepsilon) \circ(a+c \varepsilon)=a+(b+c) \varepsilon$;
- the dual $a+0 \varepsilon \in \mathcal{R}$ is the identity morphism from a to itself.
- Addition + and multiplication \times of the duals give monoidal structures on \mathbf{R}.
- $(a+b \varepsilon)+(c+d \varepsilon)$ is the morphism $(a+c)+(b+d) \varepsilon$ from the object $a+c$ to itself.
- $(a+b \varepsilon) \times(c+d \varepsilon)$ is the morphism $(a c)+(a d+b c) \varepsilon$ from the object $a c$ to itself.
- The category \mathbf{R} of duals is a rig category.

Information Posets

- For simplicity, we define information posets as special cases of information structures ${ }^{3}$.
- An information poset is a category where
- the objects are finite sets (measurable spaces);
- the morphisms are surjections (measurable surjections);
- there is at most one morphism between any two objects.
- there is a terminal object, a one-element set $*$.
- Disjoint union + and Cartesian product \times of sets give monoidal structures.
- Given $f: A \rightarrow B$ and $g: C \rightarrow D$, we have $f+g: A+B \rightarrow C+D$.
- Given $f: A \rightarrow B$ and $g: C \rightarrow D$, we have $f \times g: A \times B \rightarrow C \times D$.
- Information posets are rig categories.

[^1]
Measure Functors

- Let FinMeas be the category where
- the objects $\left(X, \mu_{X}\right)$ are finite sets equipped with a measure;
- the morphisms $\left(Y, \mu_{Y}\right) \rightarrow\left(X, \mu_{X}\right)$ are measure-preserving maps, i.e. the underlying set map $f: Y \rightarrow X$ satisfies $\mu_{X}(x)=\mu_{Y}\left(f^{-1}(x)\right)$.
- Fix an information poset \mathbf{P}. A functor $q: \mathbf{P} \rightarrow$ FinMeas is a measure functor if it associates
- X in \mathbf{P} to some $\left(X, q_{X}\right)$ in FinMeas where the underlying set is X;
- $f: Y \rightarrow X$ in \mathbf{P} to some $\left(Y, q_{Y}\right) \rightarrow\left(X, q_{X}\right)$ in FinMeas where the underlying set map is f.
- sums $f_{1}+f_{2}: X_{1}+X_{2} \rightarrow Y_{1}+Y_{2}$ to sums $\left(X_{1}+X_{2}, \mu_{X_{1}}+\mu_{X_{2}}\right) \rightarrow\left(Y_{1}+Y_{2}, \mu_{Y_{1}}+\mu_{Y_{2}}\right)$.
- products $f_{1} \times f_{2}: X_{1} \times X_{2} \rightarrow Y_{1} \times Y_{2}$ to products $\left(X_{1} \times X_{2}, \mu_{X_{1}} \mu_{X_{2}}\right) \rightarrow\left(Y_{1} \times Y_{2}, \mu_{Y_{1}} \mu_{Y_{2}}\right)$.
- Given a measure functor $q: \mathbf{P} \rightarrow$ FinMeas and a surjection $f: Y \rightarrow X$, we define for all $y \in Y$ and $x=f(y) \in X$ with $q_{X}(x) \neq 0$, the conditional probability

$$
q_{f}(y \mid x)=q_{Y}(y) / q_{X}(x) .
$$

Relative Information as a Functor

- Fix an information poset \mathbf{P} and measure functors $q, p: \mathbf{P} \rightarrow$ FinMeas.
- For each object X in \mathbf{P}, define the total measure

$$
T_{q}(X)=\sum_{x \in X} q_{X}(x)
$$

- For each surjection $f: Y \rightarrow X$ in \mathbf{P}, define the relative information

$$
I_{q \| p}(f)=\sum_{x \in X} q_{X}(x) \sum_{y \in f^{-1}(x)} q_{f}(y \mid x) \log \frac{q_{f}(y \mid x)}{p_{f}(y \mid x)}
$$

Theorem

Let $F_{q \| p}: \mathbf{P} \rightarrow \mathbf{R}$ be the mapping that associates each surjection $f: Y \rightarrow X$ in \mathbf{P} to the dual number $T_{q}(X)+I_{q \| p}(f) \varepsilon$ in \mathbf{R}. Then $F_{q \| p}$ is a rig monoidal functor.

Relative Information as a Functor

Proof Outline

Claims about total measure.

- Check that $F_{q \| p}$ maps surjections $f: Y \rightarrow X$ in \mathbf{P} to loops $a \rightarrow a$ in \mathbf{R}, i.e.

$$
T_{q}(Y)=T_{q}(X)
$$

- Check that $F_{q \| p}$ maps disjoint unions of objects in \mathbf{P} to sums of reals in \mathbf{R}, i.e.

$$
T_{q}\left(X_{1}+X_{2}\right)=T_{q}\left(X_{1}\right)+T_{q}\left(X_{2}\right)
$$

- Check that $F_{q \| p}$ maps Cartesian products of objects in \mathbf{P} to products of reals in \mathbf{R}, i.e.

$$
T_{q}\left(X_{1} \times X_{2}\right)=T_{q}\left(X_{1}\right) T_{q}\left(X_{2}\right)
$$

Indeed, the first follows because $T_{q}(Y)$ and $T_{q}(X)$ are total measures and f is measure-preserving. The second and third claims follow from the sum rule and product rule for total measure.

Relative Information as a Functor

Proof Outline

Claims about relative information.

- Check that $F_{q \| p}$ maps compositions in \mathbf{P} to tangent sums in \mathbf{R}, i.e.

$$
I_{q \| p}(f \circ g)=I_{q \| p}(f)+I_{q \| p}(g)
$$

- Check that $F_{q \| p}$ maps disjoint unions of morphisms in \mathbf{P} to sums of duals in \mathbf{R}, i.e.

$$
I_{q \| p}\left(f_{1}+f_{2}\right)=I_{q \| p}\left(f_{1}\right)+I_{q \| p}\left(f_{2}\right)
$$

- Check that $F_{q \| p}$ maps Cartesian products in \mathbf{P} to products in \mathbf{R}, i.e.

$$
I_{q \| p}\left(f_{1} \times f_{2}\right)=T_{q}\left(X_{2}\right) \cdot I_{q \| p}\left(f_{1}\right)+T_{q}\left(X_{1}\right) \cdot I_{q \| p}\left(f_{2}\right)
$$

Indeed, the claims follow from the chain, sum and product rules for relative information.

Why Relative Information?

- Information is relative! Information is energy!
- Beautiful algebra, geometry and combinatorics!
- Generalized relative information as rig monoidal functors, as cohomology.
- It from bit! ${ }^{4}$

Density of states

[^2]
Thank you!

shaoweilin.github.io

Sigma complex

- Sigma complex ${ }^{6}$ - gluing together of sigma algebras along subalgebras.

INFORMATION STRUCTURES

Let \mathbf{S} be a partially ordered set (poset); we see it as a category, denoting the order relation by an arrow. It is supposed to have a terminal object T and to satisfy the following property: whenever $X, Y, Z \in \mathrm{Ob} \mathbf{S}$ are such that $X \rightarrow Y$ and $X \rightarrow Z$, the categorical product $Y \wedge Z$ exists in \mathbf{S}. An object of X of \mathbf{S} (i.e. $X \in \mathrm{Ob} \mathbf{S}$) is interpreted as an observable, an arrow $X \rightarrow Y$ as Y being coarser than X, and $Y \wedge Z$ as the joint measurement of Y and Z.

The category \mathbf{S} is just an algebraic way of encoding the relationships between observables. The measure-theoretic "implementation" of them comes in the form of a functor $\mathcal{E}: \mathbf{S} \rightarrow$ Meas that associates to each $X \in \mathrm{Ob} \mathbf{S}$ a measurable set $\mathcal{E}(X)=\left(E_{X}, \mathfrak{B}_{X}\right)$, and to each arrow $\pi: X \rightarrow Y$ in \mathbf{S} a measurable surjection $\mathcal{E}(\pi): \mathcal{E}(X) \rightarrow \mathcal{E}(Y)$. To be consistent with the interpretations given above, one must suppose that $E_{\top} \cong\{*\}$ and that $\mathcal{E}(Y \wedge Z)$ is mapped injectively into $\mathcal{E}(Y) \times \mathcal{E}(Z)$ by $\mathcal{E}(Y \wedge Z \rightarrow Y) \times \mathcal{E}(Y \wedge Z \rightarrow Z)$. We consider mainly two examples: the discrete case, in which E_{X} finite and \mathfrak{B}_{X} the collection of its subsets, and the Euclidean case, in which E_{X} is a Euclidean space and \mathfrak{B}_{X} is its Borel σ-algebra. The pair $(\mathbf{S}, \mathcal{E})$ is an information structure.

[^3]
DERIVED COHOMOLOGY

3.1. Definition. Let \mathbf{S} be a conditional meet semilattice with terminal object T. We view it as a site with the trivial topology, such that every presheaf is a sheaf. For each $X \in \mathrm{Ob} \mathbf{S}$, set $\mathscr{S}_{X}:=\{Y \in \mathrm{Ob} \mathbf{S} \mid X \rightarrow Y\}$, with the monoid structure given by the product of in $\mathbf{S}:(Z, Y) \mapsto Z Y:=Z \wedge Y$. Let $\mathscr{A}_{X}:=\mathbb{R}\left[\mathscr{S}_{X}\right]$ be the corresponding monoid algebra. The contravariant functor $X \mapsto \mathscr{A}_{X}$ is a sheaf of rings; we denote it by \mathscr{A}. The pair $(\mathbf{S}, \mathscr{A})$ is a ringed site.

The category $\operatorname{Mod}(\mathscr{A})$ is abelian [Stacks Project Authors, 2018, Lemma 03DA] and has enough injective objects [Stacks Project Authors, 2018, Theorem 01DU]. For a fixed object \mathscr{O} of $\operatorname{Mod}(\mathscr{A})$, the covariant functor $\operatorname{Hom}(\mathscr{O},-)$ is always additive and left exact: the associated right derived functors are $R^{n} \operatorname{Hom}(\mathscr{O},-)=: \operatorname{Ext}^{n}(\mathscr{O},-)$, for $n \geq 0$.

Let $\mathbb{R}_{\mathbf{S}}(X)$ be the \mathscr{A}_{X}-module defined by the trivial action of \mathscr{A}_{X} on the abelian $\operatorname{group}(\mathbb{R},+)$ (for $s \in \mathscr{S}_{X}$ and $r \in \mathbb{R}$, take $s \cdot r=r$). The presheaf that associates to each $X \in \operatorname{Ob} \mathbf{S}$ the module $\mathbb{R}_{\mathbf{S}}(X)$, and to each arrow the identity map is denoted $\mathbb{R}_{\mathbf{S}}$.

In Section 1.3, we have defined the information cohomology associated to the conditional meet semilattice \mathbf{S}, with coefficients in $\mathscr{F} \in \operatorname{Mod}(\mathscr{A})$, as

$$
\begin{equation*}
H^{\bullet}(\mathbf{S}, \mathscr{F}):=\operatorname{Ext}\left(\mathbb{R}_{\mathbf{S}}, \mathscr{F}\right) \tag{29}
\end{equation*}
$$

[^4]
[^0]: ${ }^{1}$ Watanabe, Sumio. Algebraic geometry and statistical learning theory. Vol. 25. Cambridge university press, 2009.

[^1]: ${ }^{3}$ Juan Pablo Vigneaux. "Information structures and their cohomology." arXiv preprint arXiv:1709.07807, 2017.

[^2]: ${ }^{4}$ Wheeler, J.A. (1989). Information, physics, quantum: the search for links. Int Symp on Foundations of Quantum Mechanics. Tokyo: pp. 354-358.
 ${ }^{5}$ Jesse Hoogland, "Physics I: The Thermodynamics of Learning",Singular Learning Theory and Alignment Summit 2023.

[^3]: Vigneaux, Juan Pablo. "Information cohomology of classical vector-valued observables." In Geometric Science of Information: 5th International Conference, GSI 2021, Paris, France, July 21-23, 2021, Proceedings 5, pp. 537-546. Springer International Publishing, 2021.

[^4]: ${ }^{8}$ Vigneaux, Juan Pablo. "Information structures and their cohomology." arXiv preprint arXiv:1709.07807 (2017).

