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RELATIVE INFORMATION



RELATIVE INFORMATION

» Given probability distributions g and p on a finite set X, the relative information (Kullback-Leibler
divergence, relative entropy) from p to q is

Lip(X) = 3 gx) log 1)

xeX p(x

X)
5
» Given probability densities g and p on an uncountably infinite set X, the relative information is

Lyp(X) = /q(x) log Zégdx.



RELATIVE INFORMATION

x
Iy (X) = >_q(x p(x)

xeX

> I,(X) well-defined only when p(x) = 0 implies q(x) = 0 for all x (absolute continuity).

» Think of g as the reference distribution or true distribution, and we want to know the distance of
a model distribution p to the truth. This distance is not symmetric, i.e. I|,(X) # L,(X).

» For the rest of this talk, we will work with finite state spaces for simplicity, even though the
results are applicable to continuous state spaces as well as quantum state spaces.



MAXIMUM LIKELIHOOD

> Let {p(-|w),w € Q} be a parametric model (a family of distributions) on X.

> Suppose we observe data x|,) = (x1,...,x,) € X".

» Likelihood of data L,(w) = [[; p(xi|w)
Log-likelihood of data ¢, (w) = log L, (w) = > ;log p(x;|w)

> Maximum likelihood estimate & = arg max,, £, (w)
Optimize using gradient ascent with £, (w) = ), % log p(xi|w).

» Problem. Overfitting the data.




STOCHASTIC GRADIENT DESCENT

» Suppose we could minimize the relative information (despite not knowing g).

Zq 10g ))

» Optimize using gradient descent with
=3 405 Tog p(afe).
" ow
> Estimate the gradient by sampling x from g (or data x,;). Note similarity to ln(w).

0 0
K(w) = —5logp(x|w)

» Advantage. Tends to overfit less. Popular technique in deep learning.



REAL LOG CANONICAL THRESHOLD

> Volume of tubular neighborhood V(e) = [ K(w)<e dw of relative information K(w).

> Asymptotically as ¢ — 0, we have V(e) ~ Ce?.

» Using resolution of singularities, we can prove that A is a positive rational number, known as the
real log canonical threshold" of K(w).

» Example. When K(w) is the squared distance to a smooth manifold of codim d, then A = d/2.

Watanabe, Sumio. Algebraic geometry and statistical learning theory. Vol. 25. Cambridge university press, 2009.
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BAYESIAN INFERENCE

» Let the belief on model parameters be given initially by the prior p(w).
» Suppose we observe data xj,) = (x1,...,x,) € X".

» We update our belief to the posterior

pplwip(w) _ pxp[w)p(w)
P(Xpn)) (g w)p(w)dw’

p(wlxy) =
» We infer new data points using the predictive distribution

p(x) = plafxp) = / p(x|w)p(wlxp, )dw.



GENERALIZATION ERROR

» Generalization error G, of Bayesian inference is the relative information from predictive
distribution p*(X) to the true distribution g(x).

G = e (X) = Zx: g(x) log ;*((’;))

» Let A be the real log canonical threshold of the relative information

Theorem (Watanabe?)

2Watanabe, Sumio. Algebraic geometry and statistical learning theory. Vol. 25. Cambridge university press, 2009.



CONDITIONAL RELATIVE INFORMATION

» Consider joint probabilities g(y, x) for (y,x) € Y x X. Conditional probabilities are
q(ylx) = q(y,x)/q(x) when g(x) = >_, q(y,x) # 0

» Given distributions g,p on Y x X, the conditional relative information from p to g is

Lip(Y1X) =Y _a(0) Y _a(ylx)log |§

xeX yeY

» Important concept for variational inference, expectation-maximization algorithm.



CONDITIONAL RELATIVE INFORMATION

» More generally, given a discrete measure g on Y x X, define q(x) := Zy q(y, x) and
qylx) == q(y,x)/q(x). Let Ty :=>_, . q(y, x) denote the total measure.

> Given measures q,p on Y x X such that T, = T}, the conditional relative information is

Lip(Y1X) =Y _a(0) Y _aylx)log ;

xeX yeY

» Normalizing I, (Y[X) by the total measure T, gives the statistical relative information.



CHAIN RULE

Theorem (Chain Rule)

Lyyp (Y x X) = I (YIX) + Iy (X)
Proof.
(¥ 30 = 3 gl g 7%
_ o 1WIX)q(x)
= %:q(y\x)q(x)l & Pt
_ o 1WIX) oo 1)
= %q(ylx)q(x)l B oty > q)a(x)log s

= Igyp(

Y[X) + I (

X)



SUMS AND PRODUCTS

» Suppose we have a measure p on X and a measure g on Y.

» The sum p + g is the measure on the disjoint union X + Y where (p + q)(x) = p(x) if x € X, and
(P+a)y) =qly)ify Y.

» The product p x g is the measure on the Cartesian product X x Y where (p x q)(x,y) = p(x)q(y).
» Total measures satisfy the sum and product rules.
Tprg=Tp+Tq

Tpeq =Ty x T,



SUMS AND PRODUCTS

» For relative information, we also have sum and product rules.

» For eachi € {1,2}, let g;, p; be discrete measures on Y; x X; with T, = T,
Theorem (Sum Rule)
Lgita ) (Y1 + V2| X1 + X2) = Ly, (Y21X1) + Ly, (Y21 X2)
Theorem (Product Rule)

I(‘h ><‘12)||(P1><P2)(Y1 X Ya| X1 x Xp) = Ty, 'I‘h”Pl(Yl’Xl) + T, 'qusz(Y2|X2)



AXIOMATIZATION OF RELATIVE INFORMATION

» We see that relative information satisfies the chain, sum and product rules.

» Under appropriate conditions, the only functions on probabilities that satisfy those rules are
scalar multiples of relative information. There are similar axiomatization results for classical
and quantum entropy. See papers below for more information.

Baez, Fritz, Leinster. "A characterization of entropy in terms of information loss." Entropy 13(11), 2011.
Baez, Fritz. "A Bayesian characterization of relative entropy." arXiv:1402.3067, 2014.

Baudot, Bennequin. "The homological nature of entropy.” Entropy 17(5), 2015.

Vigneaux. "Information structures and their cohomology." arXiv:1709.07807, 2017.

Bradley. "Entropy as a topological operad derivation." Entropy 23(9), 2021.
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Part II

DUAL NUMBERS



DUAL NUMBERS

» The rig (semiring) of duals is R = R>o[¢]/(¢?), where ¢ is an infinitesimal with &2 = 0.
Denote addition by 4 and multiplication by x.

» We shall think of the rig of duals as a category R, where

the nonnegative reals a € R>( are objects;

the duals a + be € R are morphisms from a to itself, i.e. loops;

the morphisms compose by tangent addition (a + be) o (a +ce) =a+ (b + ¢)s;
the dual a 4 Oc € R is the identity morphism from a to itself.

» Addition + and multiplication x of the duals give monoidal structures on R.

® (a+ be) + (c+ de) is the morphism (a + ¢) + (b + d)e from the object a + ¢ to itself.
® (a+ be) x (c+ de) is the morphism (ac) + (ad + bc)e from the object ac to itself.

» The category R of duals is a rig category.



INFORMATION POSETS

» For simplicity, we define information posets as special cases of information structures>.
» An information poset is a category where

the objects are finite sets (measurable spaces);

the morphisms are surjections (measurable surjections);
there is at most one morphism between any two objects.
there is a terminal object, a one-element set .

» Disjoint union + and Cartesian product x of sets give monoidal structures.

® Givenf: A —+Bandg:C — D,wehavef+g:A+B— C+D.
® Givenf: A —+Bandg:C — D,wehavef xg: AxB— CxD.

» Information posets are rig categories.

3Juan Pablo Vigneaux. "Information structures and their cohomology." arXiv preprint arXiv:1709.07807, 2017.
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MEASURE FUNCTORS

» Let FinMeas be the category where

* the objects (X, ux) are finite sets equipped with a measure;
® the morphisms (Y, uy) — (X, 1x) are measure-preserving maps,
i.e. the underlying set map f : Y — X satisfies ux(x) = py(f ~(x)).

» Fix an information poset P. A functor q : P — FinMeas is a measure functor if it associates

® Xin P to some (X, qx) in FinMeas where the underlying set is X;

® f:Y — XinPtosome (Y,qy) = (X, gx) in FinMeas where the underlying set map is f.
® sumsfi +f: X1+ Xo — Y1 + Yo tosums (X5 + Xo, pux, + px,) = (Y1 + Yo, py, + py,)-
® products fi x fo : X1 x Xo = Y7 x Yy to products (Xq x Xo, pux, f1x,) = (Y1 % Yo, poy, poy,)-

» Given a measure functor q : P — FinMeas and a surjection f : Y — X, we define
forally € Yand x = f(y) € X with gx(x) # 0, the conditional probability

ar(ylx) = qv(y)/gx(x).



RELATIVE INFORMATION AS A FUNCTOR

» Fix an information poset P and measure functors q,p : P — FinMeas.

» For each object X in P, define the total measure

Ty(X) = qu(x);

xeX

» For each surjection f : Y — X in P, define the relative information

- o qr(y|x)
Iqu(f) = erXqX(x) y@;(x) Qf(y\x)l gpf(y|x)

Theorem

Let F, : P — R be the mapping that associates each surjectionf : Y — X in P
to the dual number T, (X) + L;,(f)e in R. Then F, is a rig monoidal functor.



RELATIVE INFORMATION AS A FUNCTOR

Proof Outline

Claims about total measure.
» Check that F,), maps surjections f : Y — X in P to loopsa — ainR, i.e.
T;(Y) = Ty(X).
» Check that Fy, maps disjoint unions of objects in P to sums of reals in R, i.e.
Ty(X1 4 Xa) = Ty(Xq) + Ty(Xz).

» Check that F,, maps Cartesian products of objects in P to products of reals in R, i.e.

qllp

Tq(Xl X Xz) = Tq(Xl) Tq<X2).

Indeed, the first follows because T;(Y) and T,(X) are total measures and f is measure-preserving.
The second and third claims follow from the sum rule and product rule for total measure.



RELATIVE INFORMATION AS A FUNCTOR

Proof Outline

Claims about relative information.

> Check that F,), maps compositions in P to tangent sums in R, i.e.

Iqllp(fog) = qllp(f) —i—Iqu(g).

» Check that F;), maps disjoint unions of morphisms in P to sums of duals in R, i.e.

Ly +f2) = Lyp(h) + Lyp(f2)-

» Check that Fy, maps Cartesian products in P to products in R, i.e.

Lyp(fi % f2) = Tg(X2) - Lyp(F1) + Tg(Xa) - Igyp(f2)-

Indeed, the claims follow from the chain, sum and product rules for relative information.
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WHY RELATIVE INFORMATION?

» Information is relative! Information is energy!
» Beautiful algebra, geometry and combinatorics!
» Generalized relative information as rig monoidal functors, as cohomology.

» It from bit! *

Density of states

= / 5(1(0) —

Two-sided Laplace transfon-/ E j \ Mellin transform

Z(N) = /v() NEGE — / *N”)de E)EdE = 1(9)249

Partition function Zeta function

“Wheeler, J.A. (1989). Information, physics, quantum: the search for links. Int Symp on Foundations of Quantum Mechanics. Tokyo: pp. 354-358.
5Jesse Hoogland, "Physics I: The Thermodynamics of Learning”,Singular Learning Theory and Alignment Summit 2023.
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Thank you!

shaoweilin.github.1o0
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shaoweilin.github.io

SIGMA COMPLEX

> Sigma complex6 - gluing together of sigma algebras along subalgebras.

(LLL1} (LLLI1)

(0,L,11)

(1,1,00)

(1,0,00) ©.00,1) (1,0,0,0) 0,001

©,0,0.0) (0,0,0.0)

6Kocherl, Simon B. "A reconstruction of quantum mechanics.” Quantum [Un] Speakables II: Half a Century of Bell’s Theorem (2017): 201-235.



INFORMATION STRUCTURES

Let S be a partially ordered set (poset); we see it as a category, denoting the
order relation by an arrow. It is supposed to have a terminal object T and to
satisfy the following property: whenever X,Y, 7 € ObS are such that X — Y
and X — Z, the categorical product Y A Z exists in S. An object of X of S (i.e.
X € ObS) is interpreted as an observable, an arrow X — Y as Y being coarser
than X, and Y A Z as the joint measurement of ¥ and Z.

The category S is just an algebraic way of encoding the relationships between
observables. The measure-theoretic “implementation” of them comes in the form
of a functor £ : 8 — Meas that associates to each X € ObS a measurable set
E(X) = (Ex,Bx), and to each arrow 7 : X — Y in S a measurable surjection
E(m) + E(X) — E(Y). To be consistent with the interpretations given above,
one must suppose that E+ = {x} and that £(Y A Z) is mapped injectively into
EY)xEZ)by EYNZ - Y)xEY ANZ — Z). We consider mainly two
examples: the discrete case, in which Ex finite and B x the collection of its
subsets, and the Euclidean case, in which Ex is a Euclidean space and Bx is
its Borel o-algebra. The pair (S, ) is an information structure.

7Vigneaux, Juan Pablo. "Information cohomology of classical vector-valued observables." In Geometric Science of Information: 5th International Conference, GSI 2021, Paris,
France, July 21-23, 2021, Proceedings 5, pp. 537-546. Springer International Publishing, 2021.



DERIVED COHOMOLOGY

3.1. DEFINITION. Let S be a conditional meet semilattice with terminal object T. We
view it as a site with the trivial topology, such that every presheaf is a sheaf. For each
X € ObS, set .#x :={Y € ObS | X — Y}, with the monoid structure given by the
product of in S: (Z,Y) + ZY := ZAY. Let oy := R[.#x] be the corresponding monoid
algebra. The contravariant functor X +— <7y is a sheaf of rings; we denote it by /. The
pair (S, &) is a ringed site.

The category Mod(«7) is abelian [Stacks Project Authors, 2018, Lemma 03DA] and
has enough injective objects [Stacks Project Authors, 2018, Theorem 01DU]. For a fixed
object & of Mod (&), the covariant functor Hom(&', —) is always additive and left exact:
the associated right derived functors are R" Hom(&, —) =: Ext" (&, —), for n > 0.

Let Rg(X) be the @y-module defined by the trivial action of &y on the abelian
group (R, +) (for s € #x and r € R, take s-r = r). The presheaf that associates to each
X € Ob S the module Rg(X), and to each arrow the identity map is denoted Rg.

In Section 1.3, we have defined the information cohomology associated to the condi-
tional meet semilattice S, with coefficients in .# € Mod(%/), as

H*(S, F) = Ext*(Rg, #). (29)

8Vigneaux, Juan Pablo. "Information structures and their cohomology." arXiv preprint arXiv:1709.07807 (2017).
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