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SPIKING NEURAL NETWORKS

▶ Spiking neural networks (SNNs) are
artificial neural networks (ANNs) that mimic
biological neural networks (BNNs) more closely than
feedforward neural networks (FNNs).

▶ Event-driven. Neurons communicate only when there is a spike.

▶ Energy-efficient.
• Human brain ∼20W
• Training GPT41 ∼55GWh > 6 × 106 human years.
• Training cost? Inference cost?

1https://towardsdatascience.com/the-carbon-footprint-of-gpt-4-d6c676eb21ae
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ENERGY CONSUMPTION

2Davies M, Wild A, Orchard G, Sandamirskaya Y, Guerra GA, Joshi P, Plank P, Risbud SR. Advancing neuromorphic computing with loihi: A survey of results and outlook.
Proceedings of the IEEE. 2021 Apr 6;109(5):911-34.
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SPIKE RESPONSE MODEL

▶ For clarity, we study a simplified (stochastic) spike response model (SRM)3 for a directed network
(V,E) where V is the set of neurons and E is the set of synapses.

▶ Our SRM is a continuous-time Markov chain where at time t, each neuron j has a membrane
potential ujt and an instantaneous spiking rate

ρjt = ρ0 exp(βujt)

for some fixed rate constant ρ0 and fixed inverse temperature β.

▶ The membrane potential ujt of neuron j at time t is given by

ujt = u0 +
∑
ij∈E

wijcijt

where u0 is a fixed reset potential, wij is the synaptic weight from neuron i to neuron j, and cijt
counts the spikes from neuron i since the last spike from neuron j (up to some max L).

3https://neuronaldynamics.epfl.ch/online/Ch9.S1.html
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TRANSITION RATES

▶ The SRM is a continuous-time Markov chain with states ct = (cijt)ij∈E ∈ {0, . . . ,L}E and weights
w = (wij)ij∈E ∈ RE. Let Γ be the transition rate matrix.

▶ The entry Γcc′ is nonzero only when c′ is derived from c by the spiking of some neuron j ∈ V, i.e.
cji increases by 1 (up to L) for all ji ∈ E but cij resets to 0 for all ij ∈ E. Here,

Γcc′ = ρ0 exp(βuj), where uj = u0 +
∑

ij∈E wijcij,

Γcc = −
∑

c′ ̸=c Γcc′ .
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PATH DISTRIBUTION

▶ We sample paths from the SRM by uniformization. Given γ > |Γcc| for all c, sample from a
Poisson process with rate γ where at each firing, state c jumps to state c′ with probability

Pcc′ =

{
Γcc′/γ, if c′ ̸= c,
1 − Γcc/γ, otherwise.

▶ A path x0...T : [0,T] → {0, . . . ,L}E of time-length T with jumps c0, c1, . . . , cn has probability

p(x0...T) = π(c0)
(γT)n

n!
e−γT

n−1∏
i=0

Pcici+1

where π(·) is the initial distribution on the states.
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DISCRETE TIME APPROXIMATION

▶ Allow multiple spikes in one time step. Good for simulating on GPUs.

▶ Discretize time into small intervals of size δ.

▶ Fix a neuron j. Let c be the current state of the network. Let ρj be the resulting spiking rate.

p(neuron j unchanged | c) = e−δρj

p(neuron j spikes | c) = 1 − e−δρj ≈ δρj e−δρj

▶ Let Vs ⊂ V be the set of neurons that spiked. Let c′ be the resulting state of the network.

p(c′|c) =
∏
j∈V

e−δρj
∏
j∈Vs

δρj

▶ The limit as δ → 0 of the above process is our continuous-time Markov chain.
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SPIKE-TIMING-DEPENDENT PLASTICITY

▶ How do we train the weights wij? An experimentally-observed method is STDP (Bi & Poo
1998). Update depends on temporal order of and interval between pre-spike and post-spike.

▶ How do we train the weights in a model with hidden variables?

4Asl, Mojtaba Madadi. "Propagation delays determine the effects of synaptic plasticity on the structure and dynamics of neuronal networks." (2018).
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Part II

RELATIVE INFORMATION
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HIDDEN VARIABLES

Setup
▶ Observed variable X
▶ Hidden variable Z
▶ True distribution q(X)

▶ Model distribution pθ(X,Z) parametrized by θ

▶ Marginal distribution pθ(X) =
∫

pθ(X,Z)dZ

Goal
▶ Find θ minimizing the (relative) information or Kullback-Leibler divergence of X from pθ to q.

Iq∥pθ(X) =

∫
q(X) log

q(X)

pθ(X)
dX
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VARIATIONAL INFERENCE

Trick.
▶ Introduce distribution q(Z|X) as extra parameter for optimization
▶ Discriminative distribution q(X,Z) = q(Z|X)q(X)

▶ Generative distribution pθ(X,Z) = pθ(X|Z)pθ(Z)
▶ Minimize

Iq∥pθ(X,Z) =
∫

q(X,Z) log
q(X,Z)
pθ(X,Z)

dXdZ

by alternatingly varying q(Z|X) while holding pθ(X,Z) fixed, and vice versa.

Variants.
▶ EM algorithm (Dempster-Laird-Rubin)5. Let q(Z|X) be pθ(Z|X) at each step of the optimization.
▶ em algorithm (Amari)6. Let q(Z|X) be parametrized qλ(Z|X) and alternatingly optimize θ and λ.
▶ Amari’s em algorithm is biologically more plausible because Bayesian inversion is hard!

5Dempster, A.P., N.M. Laird, and D.B. Rubin. "Maximum likelihood from incomplete data via the EM algorithm." JRSS 39, no. 1 (1977): 1-22.
6Amari, Shun-ichi. "Information geometry of the EM and em algorithms for neural networks." Neural networks 8, no. 9 (1995): 1379-1408.
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CONDITIONAL RELATIVE INFORMATION

▶ A powerful concept is the (conditional relative) information of Z given X from pθ to q.

Iq∥pθ(Z|X) =

∫
q(X)

(∫
q(Z|X) log

q(Z|X)

pθ(Z|X)
dZ

)
dX

▶ It satisfies a fundamental lemma, the Chain Rule.

Iq∥pθ(Z,X) = Iq∥pθ(Z|X) + Iq∥pθ(X)

▶ In the EM/em algorithms,
• Iq∥pθ(Z|X) is minimized in the E/e-step, and
• Iq∥pθ(Z,X) is minimized in the M/m-step.
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TIME SERIES WITH MEMORY

▶ Time. Assume discrete time for simplicity.
▶ Environment. X1,X2, . . .. Immutable. Possibly partially hidden.
▶ Memory. Z1,Z2, . . .. Mutable. Not latent/hidden variables!

▶ Goal. Optimize use of limited memory for predicting environment.
▶ Objective. Minimize

lim
T→∞

1
T

Iq∥pθ(X1...T,Z1...T)
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INFORMATION CONSTRAINTS

Put different constraints on structure of q(Z1...T|X1...T) =
∏

k q(Zk+1|Z1...k,X1...T).
Let p∗ denote the resulting pθ that minimizes Iq∥pθ(X1...T,Z1...T).

▶ No constraints. q(Z1...T|X1...T) =
∏

k q(Zk+1|Z1...k,X1...T). Optimal Ifree = Iq∥p∗(X1...T).

▶ Online learning. q(Z1...T|X1...T) =
∏

k q(Zk+1|Z1...k,X1...k). Optimal Ionline > Ifree.

▶ Limited memory. q(Z1...T|X1...T) =
∏

k q(Zk+1|Zk,Xk). Optimal Imem > Ionline.
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RELATIVE INFORMATION RATE

▶ Assume limited memory, i.e. Markov process q(Z1...T|X1...T) =
∏

k q(Zk+1|Zk,Xk).
▶ Assume q has stationary distribution π̄.
▶ Let q̄ be same Markov process but with initial distribution π̄.

▶ Using Kingman’s subadditive ergodic theory7 and under mild regularity conditions8,

lim
T→∞

1
T

Iq∥p(X1...T,Z1...T) = Iq̄∥p(Z2,X2|Z1,X1).

▶ In continuous-time, we get the (relative) information rate

lim
T→∞

1
T

Iq∥p(X1...T,Z1...T) =
d
dt

Iq̄∥p(X1...1+t,Z1...1+t)

∣∣∣∣
t=0

.

7https://en.wikipedia.org/wiki/Kingman%27s_subadditive_ergodic_theorem
8Brian G Leroux. "Maximum-likelihood estimation for hidden markov models." Stochastic processes and their applications, 40(1):127–143, 1992.
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STOCHASTIC APPROXIMATION

Setup. Parametric models qλ(Zn+1|Zn,Xn) and pθ(Zn+1,Xn+1|Zn,Xn).

Goal. Minimize information Iq̄∥p(Z2,X2|Z1,X1).

Stochastic Approximation.9

1. Sample environment Xn+1 from true distribution q(Xn+1|Xn).
2. Sample memory Zn+1 from discriminatory distribution qλ(Zn+1|Zn,Xn).
3. Sample the generator gradient ∇θ Iq̄∥p(Z2,X2|Z1,X1) using Zn+1,Xn+1.
4. Sample the discriminator gradient ∇λ Iq̄∥p(Z2,X2|Z1,X1) using Zn+1,Xn+1.
5. Update parameters θ, λ and repeat until convergence.

9Robbins, Herbert, and Sutton Monro. "A stochastic approximation method." The annals of mathematical statistics (1951): 400-407.
16 / 30



STOCHASTIC GRADIENTS

Generator.

∇θ Iq̄∥p(Z2,X2|Z1,X1)

= lim
T→∞

Eq [∇θ log pθ(ZT+1,XT+1|ZT,XT)]

Discriminator.

∇λ Iq̄∥p(Z2,X2|Z1,X1)

= lim
T→∞

Eq

[( T∑
i=1

∇λ log qλ(Zi+1|Zi,Xi)
)

︸ ︷︷ ︸
momentum

log
qλ(ZT+1,XT+1|ZT,XT)

pθ(ZT+1,XT+1|ZT,XT)︸ ︷︷ ︸
surprise

]

▶ Use discounted momentum (scale summands by some τT−i with τ<1) for numerical stability.
▶ Same as reinforcement learning with surprise as reward (policy gradient for average reward)10.

10Karimi, Belhal, Blazej Miasojedow, Eric Moulines, and Hoi-To Wai. "Non-asymptotic analysis of biased stochastic approximation scheme." PMLR 2019 pp. 1944-1974.
17 / 30



ONLINE LEARNING

1. Get next observation.
Xn+1 ∼ q(Xn+1|Xn)

2. Sample next memory state.
Zn+1 ∼ qλn(Zn+1|Zn,Xn)

3. Update generator.

θn+1 = θn + ηn+1
d
dθ

log pθ(Zn+1,Xn+1|Zn,Xn)

∣∣∣∣
θ=θn

4. Update momentum.

αn+1 = ταn +
d

dλ
log qλ(Zn+1|Zn,Xn)

∣∣∣∣
λ=λn

5. Update surprise.

γn+1 = ξ(Xn+1|Xn) + log
qλn(Zn+1|Zn,Xn)

pθn(Zn+1,Xn+1|Zn,Xn)

ξ(Xn+1|Xn) is any estimate of log q(Xn+1|Xn)

6. Update discriminator.
λn+1 = λn − ηn+1αn+1γn+1
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Part III

ONLINE SPIKE LEARNING
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DISCRIMINATOR NETWORKS

(a) Generator Network (b) Discriminator Network

▶ To train our generative spiking network with Amari’s em algorithm, we introduce a discriminator
network — it has the same neurons but a different set of synapses.

▶ Let the weights and transition rates of the generative network be w(p)
ij and Γ

(p)
cc′ respectively.

▶ Let the weights and transition rates of the discriminative network be w(q)
ij and Γ

(q)
cc′ respectively.

▶ Idea of introducing discriminator networks is not new — see Rezende & Gerstner 2014.11

11Rezende, D. J., and W. Gerstner. "Stochastic variational learning in recurrent neural networks." Frontiers Comput. Neurosci., 8:38, 2014.
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INFORMATION RATE

▶ Recall that the probability of a path x0...T with jumps c0, c1, . . . , cn is

p(x0...T) = π(c0)
(γT)n

n!
e−γT

n−1∏
i=0

Pcici+1 , where Pcc′ =

{
Γcc′/γ if c′ ̸= c,
1 − Γcc/γ otherwise.

▶ Using this path distribution, we can show that the (relative) information rate is

d
dt

Iq̄∥p(X0...t)

∣∣∣∣
t=0

= lim
s→0

1
s

Iq̄∥p(X0...s|X0 = c0)

= lim
s→0

1
s

∑
c0

π̄(c0)
∑
x0...T

q(x0...s|c0) log
q(x0...s|c0)

p(x0...s|c0)

=
∑

c

π̄(c)

Γ(q)
cc − Γ

(p)
cc +

∑
c′ ̸=c

Γ
(q)
cc′ log

Γ
(q)
cc′

Γ
(p)
cc′


▶ Using the information rate and Amari’s em algorithm, we derive an online learning algorithm

for spiking networks in continuous-time.
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CONTINUOUS-TIME SPIKE LEARNING

1. At all time, compute

ρ
(p)
jt = ρ0 exp(βu(p)

jt ), u(p)
jt = u0 +

∑
ij∈E w(p)

ij cijt

ρ
(q)
jt = ρ0 exp(βu(q)

jt ), u(q)
jt = u0 +

∑
ij∈E w(q)

ij cijt

ẇ(p)
ijt = −ηt β ρ

(p)
jt cijt

ẇ(q)
ijt = −ηt αijt γt, α̇ijt = −β ρ

(q)
jt cijt − ϵαijt, γt =

∑
j∈V ρ

(p)
jt − ρ

(q)
jt

2. Environmental neurons spike with unknown rate

3. Memory neurons spike with rate ρ
(q)
jt

4. When some neuron j (environment or memory) spikes, update

w(p)
ijt += ηt β cijt

w(q)
ijt += −ηt αijt γt, α̇ijt = β cijt, γt = β(u(q)

jt − u(p)
jt )

Ignore w(q)
ijt update when neuron j is environmental.
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SPIKE-TIMING-DEPENDENT PLASTICITY

Conjecture. Our learning algorithm explains STDP.
▶ Learning not accomplished by pre-before-post and post-before-pre rules.
▶ Learning accomplished by gradual weight decay and post-spike increment.
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CONJECTURES AND EXTENSIONS

▶ Conjecture. Our learning algorithm also explains the triplet rule of STDP.

▶ Conjecture. Discriminator surprise explains dopamine-based neuromodulation.

▶ Think of the counts cijt as spike credits. Build a model where the credits decay with time, and
derive the corresponding learning algorithm.
• Conjecture. Credit decay is achieved with adaptation potentials.
• Conjecture. Credit decay explains refractoriness after a spike.
• Conjecture. Credit decay gives rise to discounted momentum.
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SINGULAR LEARNING

12Jesse Hoogland, "Physics I: The Thermodynamics of Learning",Singular Learning Theory and Alignment Summit 2023.
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Thank you!

shaoweilin.github.io
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Part IV

APPENDIX
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RELATIVE INFORMATION RATE

The relative information rate is given by

d
dt

Iq̄∥p(X0...t)

∣∣∣∣
t=0

= lim
s→0

1
s
[
IQ∥P(X0...s)− IQ∥P(X0)

]
Using the chain rule I(X,Y) = I(Y|X) + I(X),

d
dt

Iq̄∥p(X0...t)

∣∣∣∣
t=0

= lim
s→0

1
s

Iq̄∥p(X0...s|X0)

= lim
s→0

1
s

∑
c0

π̄(c0)
∑
x0...T

q(x0...s|c0) log
q(x0...s|c0)

p(x0...s|c0)

Let Γ∗,Γ be the transition rate matrices of q, p respectively. Let δ = 1/γ and

Pcc′ =

{
δΓcc′ if c′ ̸= c,
1 − δΓcc otherwise

, P∗
cc′ =

{
δΓ∗

cc′ if c′ ̸= c,
1 − δΓ∗

cc otherwise.
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RELATIVE INFORMATION RATE

We expand the relative information∑
x0...T

q(x0...s|c0) log
q(x0...s|c0)

p(x0...s|c0)

=

∞∑
n=0

∑
y1,...,yn

(s/δ)n

n!
e−s/δ ∏n−1

i=0 P∗
yiyi+1

log

∏n−1
i=0 P∗

yiyi+1∏n−1
i=0 Pyiyi+1

.

When n = 0, the summand vanishes because the right-most factor is log 1 = 0.
The higher order terms for n ≥ 2 vanish in the limit as s → 0. Hence,

lim
s→0

1
s

IQ∥P(X0...s|X0 = x0) =
∑

y1

1
δ

P∗
y0y1

log
P∗

y0y1

Py0y1
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RELATIVE INFORMATION RATE

When y0 = y1, we have P∗
y0y0

= 1 − δΓ∗
y0y0

≈ eδΓ
∗
y0y0 , so for very small δ,

1
δ

P∗
y0y1

log
P∗

y0y1

Py0y1

≈ 1
δ

eδΓ
∗
y0y0 log

eδΓ
∗
y0y0

eδΓy0y0

= eδΓ
∗
y0y0

(
Γ∗

y0y0
− Γy0y0

)
≈ Γ∗

y0y0
− Γy0y0

When y0 ̸= y1, we have P∗
y0y1

≈ δΓ∗
y0y1

, so

1
δ

P∗
y0y1

log
P∗

y0y1

Py0y1

=
1
δ
δΓ∗

y0y1
log

δΓ∗
y0y1

δΓy0y1

= Γ∗
y0y1

log
Γ∗

y0y1

Γy0y1

Putting it all together,

d
dt

Iq̄∥p(X0...t)

∣∣∣∣
t=0

=
∑

c

π̄(c)

Γ∗
cc − Γcc +

∑
c′ ̸=c

Γ∗
cc′ log

Γ∗
cc′

Γcc′


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