ONLINE LEARNING FOR SPIKING NEURAL NETWORKS WITH RELATIVE INFORMATION RATE

> Shaowei Lin Topos Institute

(joint work with Tenzin Chan, Chris Hillar and Sarah Marzen)

20231211

IMSI Workshop on Bayesian Statistics and Statistical Learning

Part I

Spiking neural networks

SPIKING NEURAL NETWORKS

- Spiking neural networks (SNNs) are artificial neural networks (ANNs) that mimic biological neural networks (BNNs) more closely than feedforward neural networks (FNNs).
- **Event-driven.** Neurons communicate only when there is a spike.

Energy-efficient.

- Human brain ~20W
- Training GPT4¹ \sim 55GWh > 6 \times 10⁶ human years.
- Training cost? Inference cost?

¹https://towardsdatascience.com/the-carbon-footprint-of-gpt-4-d6c676eb21ae

ENERGY CONSUMPTION

²Davies M, Wild A, Orchard G, Sandamirskaya Y, Guerra GA, Joshi P, Plank P, Risbud SR. Advancing neuromorphic computing with loihi: A survey of results and outlook. Proceedings of the IEEE. 2021 Apr 6;109(5):911-34.

SPIKE RESPONSE MODEL

- For clarity, we study a simplified (stochastic) *spike response model* (SRM)³ for a directed network (V, E) where V is the set of neurons and E is the set of synapses.
- Our SRM is a continuous-time Markov chain where at time *t*, each neuron *j* has a membrane potential *u_{jt}* and an instantaneous spiking rate

 $\rho_{jt} = \rho_0 \exp(\beta u_{jt})$

for some fixed rate constant ρ_0 and fixed inverse temperature β .

• The membrane potential u_{jt} of neuron j at time t is given by

$$u_{jt} = u_0 + \sum_{ij \in E} w_{ij} c_{ijt}$$

where u_0 is a fixed reset potential, w_{ij} is the synaptic weight from neuron *i* to neuron *j*, and c_{ijt} counts the spikes from neuron *i* since the last spike from neuron *j* (up to some max *L*).

³https://neuronaldynamics.epfl.ch/online/Ch9.S1.html

TRANSITION RATES

- ► The SRM is a continuous-time Markov chain with states $c_t = (c_{ijt})_{ij \in E} \in \{0, ..., L\}^E$ and weights $w = (w_{ij})_{ij \in E} \in \mathbb{R}^E$. Let Γ be the transition rate matrix.
- ► The entry $\Gamma_{cc'}$ is nonzero only when c' is derived from c by the spiking of some neuron $j \in V$, i.e. c_{ji} increases by 1 (up to *L*) for all $ji \in E$ but c_{ij} resets to 0 for all $ij \in E$. Here,

$$\Gamma_{cc'} = \rho_0 \exp(\beta u_j), \quad \text{where } u_j = u_0 + \sum_{ij \in E} w_{ij} c_{ij},$$
$$\Gamma_{cc} = -\sum_{c' \neq c} \Gamma_{cc'}.$$

PATH DISTRIBUTION

• We sample *paths* from the SRM by *uniformization*. Given $\gamma > |\Gamma_{cc}|$ for all *c*, sample from a Poisson process with rate γ where at each firing, state *c* jumps to state *c'* with probability

$$P_{cc'} = egin{cases} \Gamma_{cc'}/\gamma, & ext{if } c'
eq c, \ 1 - \Gamma_{cc}/\gamma, & ext{otherwise.} \end{cases}$$

• A path $x_{0...T}: [0,T] \to \{0,\ldots,L\}^E$ of time-length *T* with jumps c_0, c_1,\ldots,c_n has probability

$$p(x_{0...T}) = \pi(c_0) \frac{(\gamma T)^n}{n!} e^{-\gamma T} \prod_{i=0}^{n-1} P_{c_i c_{i+1}}$$

where $\pi(\cdot)$ is the initial distribution on the states.

DISCRETE TIME APPROXIMATION

- Allow multiple spikes in one time step. Good for simulating on GPUs.
- Discretize time into small intervals of size δ .

Fix a neuron *j*. Let *c* be the current state of the network. Let ρ_i be the resulting spiking rate.

 $p(\text{ neuron } j \text{ unchanged } | c) = e^{-\delta \rho_j}$ $p(\text{ neuron } j \text{ spikes } | c) = 1 - e^{-\delta \rho_j} \approx \delta \rho_j e^{-\delta \rho_j}$

• Let $V_s \subset V$ be the set of neurons that spiked. Let c' be the resulting state of the network.

$$p(c'|c) = \prod_{j \in V} e^{-\delta
ho_j} \prod_{j \in V_s} \delta
ho_j$$

• The limit as $\delta \rightarrow 0$ of the above process is our continuous-time Markov chain.

SPIKE-TIMING-DEPENDENT PLASTICITY

- ▶ How do we train the weights *w*_{*ij*}? An experimentally-observed method is STDP (Bi & Poo 1998). Update depends on temporal order of and interval between pre-spike and post-spike.
- ▶ How do we train the weights in a model with *hidden variables*?

⁴Asl, Mojtaba Madadi. "Propagation delays determine the effects of synaptic plasticity on the structure and dynamics of neuronal networks." (2018).

Part II

RELATIVE INFORMATION

HIDDEN VARIABLES

Setup

- Observed variable X
- Hidden variable Z
- ► True distribution *q*(*X*)
- Model distribution $p_{\theta}(X, Z)$ parametrized by θ
- Marginal distribution $p_{\theta}(X) = \int p_{\theta}(X, Z) dZ$

Goal

Find θ minimizing the (*relative*) *information* or *Kullback-Leibler divergence* of X from p_{θ} to q.

$$I_{q||p_{\theta}}(X) = \int q(X) \log \frac{q(X)}{p_{\theta}(X)} dX$$

VARIATIONAL INFERENCE

Trick.

- Introduce distribution q(Z|X) as extra parameter for optimization
- *Discriminative* distribution q(X, Z) = q(Z|X)q(X)
- *Generative* distribution $p_{\theta}(X, Z) = p_{\theta}(X|Z)p_{\theta}(Z)$
- Minimize

$$I_{q||p_{\theta}}(X,Z) = \int q(X,Z) \log \frac{q(X,Z)}{p_{\theta}(X,Z)} dX dZ$$

by alternatingly varying q(Z|X) while holding $p_{\theta}(X, Z)$ fixed, and vice versa.

Variants.

- ► *EM algorithm* (Dempster-Laird-Rubin)⁵. Let q(Z|X) be $p_{\theta}(Z|X)$ at each step of the optimization.
- *em algorithm* (Amari)⁶. Let q(Z|X) be parametrized $q_{\lambda}(Z|X)$ and alternatingly optimize θ and λ .
- Amari's *em* algorithm is biologically more plausible because **Bayesian inversion is hard**!

⁵Dempster, A.P., N.M. Laird, and D.B. Rubin. "Maximum likelihood from incomplete data via the EM algorithm." JRSS 39, no. 1 (1977): 1-22.

⁶ Amari, Shun-ichi. "Information geometry of the EM and em algorithms for neural networks." Neural networks 8, no. 9 (1995): 1379-1408.

CONDITIONAL RELATIVE INFORMATION

• A powerful concept is the (conditional relative) information of Z given X from p_{θ} to q.

$$I_{q||p_{\theta}}(Z|X) = \int q(X) \left(\int q(Z|X) \log \frac{q(Z|X)}{p_{\theta}(Z|X)} \, dZ \right) dX$$

▶ It satisfies a fundamental lemma, the *Chain Rule*.

$$I_{q\parallel p_{\theta}}(Z,X) = I_{q\parallel p_{\theta}}(Z|X) + I_{q\parallel p_{\theta}}(X)$$

- ▶ In the EM/*em* algorithms,

 - *I*_{q||pθ}(*Z*|*X*) is minimized in the E/*e*-step, and *I*_{q||pθ}(*Z*, *X*) is minimized in the M/*m*-step.

TIME SERIES WITH MEMORY

- ► **Time.** Assume discrete time for simplicity.
- **Environment**. *X*₁*, X*₂*,...* Immutable. Possibly partially hidden.
- ▶ **Memory**. *Z*₁, *Z*₂, Mutable. Not latent/hidden variables!
- **Goal**. Optimize use of limited memory for predicting environment.
- **Objective.** Minimize

$$\lim_{T \to \infty} \frac{1}{T} I_{q \parallel p_{\theta}}(X_{1\dots T}, Z_{1\dots T})$$

INFORMATION CONSTRAINTS

Put different constraints on structure of $q(Z_{1...T}|X_{1...T}) = \prod_k q(Z_{k+1}|Z_{1...k}, X_{1...T})$. Let p^* denote the resulting p_θ that minimizes $I_{q||p_\theta}(X_{1...T}, Z_{1...T})$.

- ▶ No constraints. $q(Z_{1...T}|X_{1...T}) = \prod_k q(Z_{k+1}|Z_{1...k}, X_{1...T})$. Optimal $I_{\text{free}} = I_{q||p^*}(X_{1...T})$.
- Online learning. $q(Z_{1...T}|X_{1...T}) = \prod_k q(Z_{k+1}|Z_{1...k}, \mathbf{X}_{1...k})$. Optimal $I_{\text{online}} > I_{\text{free}}$.
- Limited memory. $q(Z_{1...T}|X_{1...T}) = \prod_k q(Z_{k+1}|Z_k, X_k)$. Optimal $I_{\text{mem}} > I_{\text{online}}$.

- ► Assume limited memory, i.e. Markov process $q(Z_{1...T}|X_{1...T}) = \prod_k q(Z_{k+1}|Z_k, X_k)$.
- Assume *q* has stationary distribution $\bar{\pi}$.
- Let \bar{q} be same Markov process but with initial distribution $\bar{\pi}$.
- ▶ Using Kingman's subadditive ergodic theory⁷ and under mild regularity conditions⁸,

$$\lim_{T \to \infty} \frac{1}{T} I_{q \parallel p}(X_{1...T}, Z_{1...T}) = I_{\overline{q} \parallel p}(Z_2, X_2 | Z_1, X_1).$$

▶ In continuous-time, we get the (*relative*) *information rate*

$$\lim_{T \to \infty} \frac{1}{T} I_{q \parallel p}(X_{1...T}, Z_{1...T}) = \left. \frac{d}{dt} I_{\overline{q} \parallel p}(X_{1...1+t}, Z_{1...1+t}) \right|_{t=0}.$$

⁷https://en.wikipedia.org/wiki/Kingman%27s_subadditive_ergodic_theorem

⁸Brian G Leroux. "Maximum-likelihood estimation for hidden markov models." Stochastic processes and their applications, 40(1):127–143, 1992.

STOCHASTIC APPROXIMATION

Setup. Parametric models $q_{\lambda}(Z_{n+1}|Z_n, X_n)$ and $p_{\theta}(Z_{n+1}, X_{n+1}|Z_n, X_n)$.

Goal. Minimize information $I_{\overline{q}||p}(Z_2, X_2|Z_1, X_1)$.

Stochastic Approximation.⁹

- 1. Sample environment X_{n+1} from true distribution $q(X_{n+1}|X_n)$.
- 2. Sample memory Z_{n+1} from discriminatory distribution $q_{\lambda}(Z_{n+1}|Z_n, X_n)$.
- 3. Sample the generator gradient $\nabla_{\theta} I_{\bar{q}||p}(Z_2, X_2|Z_1, X_1)$ using Z_{n+1}, X_{n+1} .
- 4. Sample the discriminator gradient $\nabla_{\lambda} I_{\bar{q}||p}(Z_2, X_2|Z_1, X_1)$ using Z_{n+1}, X_{n+1} .
- 5. Update parameters θ , λ and repeat until convergence.

⁹Robbins, Herbert, and Sutton Monro. "A stochastic approximation method." The annals of mathematical statistics (1951): 400-407.

STOCHASTIC GRADIENTS

Generator.

$$\begin{aligned} \nabla_{\theta} I_{\bar{q} \parallel p}(Z_2, X_2 | Z_1, X_1) \\ &= \lim_{T \to \infty} \mathbb{E}_q \left[\nabla_{\theta} \log p_{\theta}(Z_{T+1}, X_{T+1} | Z_T, X_T) \right] \end{aligned}$$

Discriminator.

$$\nabla_{\lambda} I_{\bar{q}||p}(Z_2, X_2|Z_1, X_1) = \lim_{T \to \infty} \mathbb{E}_q \left[\underbrace{\left(\sum_{i=1}^T \nabla_{\lambda} \log q_{\lambda}(Z_{i+1}|Z_i, X_i) \right)}_{\text{momentum}} \underbrace{\log \frac{q_{\lambda}(Z_{T+1}, X_{T+1}|Z_T, X_T)}{p_{\theta}(Z_{T+1}, X_{T+1}|Z_T, X_T)} \right]_{\text{surprise}}$$

• Use discounted momentum (scale summands by some τ^{T-i} with $\tau < 1$) for numerical stability.

▶ Same as reinforcement learning with surprise as reward (policy gradient for average reward)¹⁰.

¹⁰Karimi, Belhal, Blazej Miasojedow, Eric Moulines, and Hoi-To Wai. "Non-asymptotic analysis of biased stochastic approximation scheme." PMLR 2019 pp. 1944-1974.

ONLINE LEARNING

1. Get next observation.

$$X_{n+1} \sim q(X_{n+1}|X_n)$$

2. Sample next memory state.

$$Z_{n+1} \sim q_{\lambda_n}(Z_{n+1}|Z_n,X_n)$$

3. Update generator.

$$\theta_{n+1} = \theta_n + \eta_{n+1} \left. \frac{d}{d\theta} \log p_{\theta}(Z_{n+1}, X_{n+1} | Z_n, X_n) \right|_{\theta = \theta_n}$$

4. Update momentum.

$$\alpha_{n+1} = \tau \alpha_n + \left. \frac{d}{d\lambda} \log q_\lambda(Z_{n+1}|Z_n, X_n) \right|_{\lambda = \lambda_n}$$

5. Update surprise.

$$\gamma_{n+1} = \xi(X_{n+1}|X_n) + \log \frac{q_{\lambda_n}(Z_{n+1}|Z_n, X_n)}{p_{\theta_n}(Z_{n+1}, X_{n+1}|Z_n, X_n)}$$

 $\xi(X_{n+1}|X_n)$ is any estimate of $\log q(X_{n+1}|X_n)$

6. Update discriminator.

$$\lambda_{n+1} = \lambda_n - \eta_{n+1}\alpha_{n+1}\gamma_{n+1}$$

Part III

ONLINE SPIKE LEARNING

DISCRIMINATOR NETWORKS

(a) Generator Network

(b) Discriminator Network

- ▶ To train our *generative* spiking network with Amari's *em* algorithm, we introduce a *discriminator* network it has the same neurons but a different set of synapses.
- Let the weights and transition rates of the generative network be $w_{ii}^{(p)}$ and $\Gamma_{cc'}^{(p)}$ respectively.
- Let the weights and transition rates of the discriminative network be $w_{ii}^{(q)}$ and $\Gamma_{cc'}^{(q)}$ respectively.
- ▶ Idea of introducing discriminator networks is not new see Rezende & Gerstner 2014.¹¹

¹¹Rezende, D. J., and W. Gerstner. "Stochastic variational learning in recurrent neural networks." Frontiers Comput. Neurosci., 8:38, 2014.

INFORMATION RATE

• Recall that the probability of a path $x_{0...T}$ with jumps $c_0, c_1, ..., c_n$ is

$$p(x_{0...T}) = \pi(c_0) \frac{(\gamma T)^n}{n!} e^{-\gamma T} \prod_{i=0}^{n-1} P_{c_i c_{i+1}}, \text{ where } P_{cc'} = \begin{cases} \Gamma_{cc'} / \gamma & \text{if } c' \neq c, \\ 1 - \Gamma_{cc} / \gamma & \text{otherwise.} \end{cases}$$

Using this path distribution, we can show that the (relative) information rate is

$$\begin{aligned} \frac{d}{dt} I_{\bar{q}||p}(X_{0...t}) \Big|_{t=0} &= \lim_{s \to 0} \frac{1}{s} I_{\bar{q}||p}(X_{0...s}|X_0 = c_0) \\ &= \lim_{s \to 0} \frac{1}{s} \sum_{c_0} \bar{\pi}(c_0) \sum_{x_{0...T}} q(x_{0...s}|c_0) \log \frac{q(x_{0...s}|c_0)}{p(x_{0...s}|c_0)} \\ &= \sum_{c} \bar{\pi}(c) \left[\Gamma_{cc}^{(q)} - \Gamma_{cc}^{(p)} + \sum_{c' \neq c} \Gamma_{cc'}^{(q)} \log \frac{\Gamma_{cc'}^{(q)}}{\Gamma_{cc'}^{(p)}} \right] \end{aligned}$$

Using the information rate and Amari's *em* algorithm, we derive an online learning algorithm for spiking networks in continuous-time.

CONTINUOUS-TIME SPIKE LEARNING

1. At all time, compute

$$\begin{aligned} \rho_{jt}^{(p)} &= \rho_0 \exp(\beta u_{jt}^{(p)}), \quad u_{jt}^{(p)} = u_0 + \sum_{ij \in E} w_{ij}^{(p)} c_{ijt} \\ \rho_{jt}^{(q)} &= \rho_0 \exp(\beta u_{jt}^{(q)}), \quad u_{jt}^{(q)} = u_0 + \sum_{ij \in E} w_{ij}^{(q)} c_{ijt} \\ \dot{w}_{ijt}^{(p)} &= -\eta_t \beta \rho_{jt}^{(p)} c_{ijt} \\ \dot{w}_{ijt}^{(q)} &= -\eta_t \alpha_{ijt} \gamma_t, \quad \dot{\alpha}_{ijt} = -\beta \rho_{jt}^{(q)} c_{ijt} - \epsilon \alpha_{ijt}, \quad \gamma_t = \sum_{j \in V} \rho_{jt}^{(p)} - \rho_{jt}^{(q)} \end{aligned}$$

- 2. Environmental neurons spike with unknown rate
- 3. Memory neurons spike with rate $\rho_{jt}^{(q)}$
- 4. When some neuron *j* (environment or memory) spikes, update

$$w_{ijt}^{(p)} \mathrel{+=} \eta_t \beta c_{ijt}$$

$$w_{ijt}^{(q)} \mathrel{+=} -\eta_t \alpha_{ijt} \gamma_t, \quad \dot{\alpha}_{ijt} = \beta c_{ijt}, \quad \gamma_t = \beta (u_{jt}^{(q)} - u_{jt}^{(p)})$$

Ignore $w_{ijt}^{(q)}$ update when neuron *j* is environmental.

SPIKE-TIMING-DEPENDENT PLASTICITY

Conjecture. Our learning algorithm explains STDP.

- Learning not accomplished by *pre-before-post* and *post-before-pre* rules.
- ▶ Learning accomplished by *gradual weight decay* and *post-spike increment*.

CONJECTURES AND EXTENSIONS

- Conjecture. Our learning algorithm also explains the triplet rule of STDP.
- **Conjecture.** Discriminator surprise explains dopamine-based neuromodulation.
- Think of the counts c_{ijt} as spike credits. Build a model where the credits decay with time, and derive the corresponding learning algorithm.
 - **Conjecture.** Credit decay is achieved with *adaptation* potentials.
 - **Conjecture.** Credit decay explains refractoriness after a spike.
 - **Conjecture.** Credit decay gives rise to discounted momentum.

SINGULAR LEARNING

Density of states

¹²Jesse Hoogland, "Physics I: The Thermodynamics of Learning", Singular Learning Theory and Alignment Summit 2023.

Thank you!

shaoweilin.github.io

Part IV

APPENDIX

The relative information rate is given by

$$\frac{d}{dt} \left. I_{\bar{\mathbf{q}} \parallel p}(X_{0...t}) \right|_{t=0} = \lim_{s \to 0} \frac{1}{s} \left[I_{Q \parallel P}(X_{0...s}) - I_{Q \parallel P}(X_{0}) \right]$$

Using the chain rule I(X, Y) = I(Y|X) + I(X),

$$\begin{aligned} \frac{d}{dt} I_{\bar{q}||p}(X_{0...t}) \bigg|_{t=0} &= \lim_{s \to 0} \frac{1}{s} I_{\bar{q}||p}(X_{0...s}|X_0) \\ &= \lim_{s \to 0} \frac{1}{s} \sum_{c_0} \bar{\pi}(c_0) \sum_{x_{0...T}} q(x_{0...s}|c_0) \log \frac{q(x_{0...s}|c_0)}{p(x_{0...s}|c_0)} \end{aligned}$$

Let Γ^* , Γ be the transition rate matrices of q, p respectively. Let $\delta = 1/\gamma$ and

$$P_{cc'} = \begin{cases} \delta \Gamma_{cc'} & \text{if } c' \neq c, \\ 1 - \delta \Gamma_{cc} & \text{otherwise} \end{cases}, \quad P_{cc'}^* = \begin{cases} \delta \Gamma_{cc'}^* & \text{if } c' \neq c, \\ 1 - \delta \Gamma_{cc}^* & \text{otherwise.} \end{cases}$$

We expand the relative information

$$\sum_{x_{0...r}} q(x_{0...s}|c_0) \log \frac{q(x_{0...s}|c_0)}{p(x_{0...s}|c_0)}$$

= $\sum_{n=0}^{\infty} \sum_{y_1,...,y_n} \frac{(s/\delta)^n}{n!} e^{-s/\delta} \prod_{i=0}^{n-1} P_{y_i y_{i+1}}^* \log \frac{\prod_{i=0}^{n-1} P_{y_i y_{i+1}}^*}{\prod_{i=0}^{n-1} P_{y_i y_{i+1}}}$

When n = 0, the summand vanishes because the right-most factor is $\log 1 = 0$. The higher order terms for $n \ge 2$ vanish in the limit as $s \to 0$. Hence,

$$\lim_{s \to 0} \frac{1}{s} I_{Q||P}(X_{0...s}|X_0 = x_0) = \sum_{y_1} \frac{1}{\delta} P_{y_0y_1}^* \log \frac{P_{y_0y_1}^*}{P_{y_0y_1}}$$

When $y_0 = y_1$, we have $P^*_{y_0y_0} = 1 - \delta \Gamma^*_{y_0y_0} \approx e^{\delta \Gamma^*_{y_0y_0}}$, so for very small δ ,

$$\frac{1}{\delta} P_{y_0 y_1}^* \log \frac{P_{y_0 y_1}^*}{P_{y_0 y_1}} \approx \frac{1}{\delta} e^{\delta \Gamma_{y_0 y_0}^*} \log \frac{e^{\delta \Gamma_{y_0 y_0}^*}}{e^{\delta \Gamma_{y_0 y_0}}} \\ = e^{\delta \Gamma_{y_0 y_0}^*} \left(\Gamma_{y_0 y_0}^* - \Gamma_{y_0 y_0} \right) \approx \Gamma_{y_0 y_0}^* - \Gamma_{y_0 y_0}$$

When $y_0 \neq y_1$, we have $P^*_{y_0y_1} \approx \delta \Gamma^*_{y_0y_1}$, so

$$\frac{1}{\delta}P_{y_0y_1}^*\log\frac{P_{y_0y_1}^*}{P_{y_0y_1}} = \frac{1}{\delta}\,\delta\Gamma_{y_0y_1}^*\log\frac{\delta\Gamma_{y_0y_1}^*}{\delta\Gamma_{y_0y_1}} = \Gamma_{y_0y_1}^*\log\frac{\Gamma_{y_0y_1}^*}{\Gamma_{y_0y_1}}$$

Putting it all together,

$$\left. \frac{d}{dt} I_{\bar{q} \parallel p}(X_{0\dots t}) \right|_{t=0} = \sum_{c} \bar{\pi}(c) \left[\Gamma_{cc}^* - \Gamma_{cc} + \sum_{c' \neq c} \Gamma_{cc'}^* \log \frac{\Gamma_{cc'}^*}{\Gamma_{cc'}} \right]$$