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SPIKING NEURAL NETWORKS

▶ Spiking neural networks (SNNs) are
artificial neural networks (ANNs) that mimic
biological neural networks (BNNs) more closely than
feedforward neural networks (FNNs).

▶ Event-driven. Neurons communicate only when there is a spike.

▶ Energy-efficient.
• Human brain ∼20W
• Training GPT41 ∼55GWh > 6 × 106 human years.
• Training cost? Inference cost?

1https://towardsdatascience.com/the-carbon-footprint-of-gpt-4-d6c676eb21ae

2 / 30

https://towardsdatascience.com/the-carbon-footprint-of-gpt-4-d6c676eb21ae


ENERGY CONSUMPTION

2Davies M, Wild A, Orchard G, Sandamirskaya Y, Guerra GA, Joshi P, Plank P, Risbud SR. Advancing neuromorphic computing with loihi: A survey of results and outlook.
Proceedings of the IEEE. 2021 Apr 6;109(5):911-34.

3 / 30



SPIKE RESPONSE MODEL

▶ For clarity, we study a simplified (stochastic) spike response model (SRM)3 for a directed network
(V,E) where V is the set of neurons and E is the set of synapses.

▶ Our SRM is a continuous-time Markov chain where at time t, each neuron j has a membrane
potential ujt and an instantaneous spiking rate

ρjt = ρ0 exp(βujt)

for some fixed rate constant ρ0 and fixed inverse temperature β.

▶ The membrane potential ujt of neuron j at time t is given by

ujt = u0 +
∑
ij∈E

wijcijt

where u0 is a fixed reset potential, wij is the synaptic weight from neuron i to neuron j, and cijt
counts the spikes from neuron i since the last spike from neuron j (up to some max L).

3https://neuronaldynamics.epfl.ch/online/Ch9.S1.html
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TRANSITION RATES

▶ The SRM is a continuous-time Markov chain with states ct = (cijt)ij∈E ∈ {0, . . . ,L}E and weights
w = (wij)ij∈E ∈ RE. Let Γ be the transition rate matrix.

▶ The entry Γcc′ is nonzero only when c′ is derived from c by the spiking of some neuron j ∈ V, i.e.
cji increases by 1 (up to L) for all ji ∈ E but cij resets to 0 for all ij ∈ E. Here,

Γcc′ = ρ0 exp(βuj), where uj = u0 +
∑

ij∈E wijcij,

Γcc = −
∑

c′ ̸=c Γcc′ .
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PATH DISTRIBUTION

▶ We sample paths from the SRM by uniformization. Given γ > |Γcc| for all c, sample from a
Poisson process with rate γ where at each firing, state c jumps to state c′ with probability

Pcc′ =

{
Γcc′/γ, if c′ ̸= c,
1 − Γcc/γ, otherwise.

▶ A path x0...T : [0,T] → {0, . . . ,L}E of time-length T with jumps c0, c1, . . . , cn has probability

p(x0...T) = π(c0)
(γT)n

n!
e−γT

n−1∏
i=0

Pcici+1

where π(·) is the initial distribution on the states.
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DISCRETE TIME APPROXIMATION

▶ Allow multiple spikes in one time step. Good for simulating on GPUs.

▶ Discretize time into small intervals of size δ.

▶ Fix a neuron j. Let c be the current state of the network. Let ρj be the resulting spiking rate.

p(neuron j unchanged | c) = e−δρj

p(neuron j spikes | c) = 1 − e−δρj ≈ δρj e−δρj

▶ Let Vs ⊂ V be the set of neurons that spiked. Let c′ be the resulting state of the network.

p(c′|c) =
∏
j∈V

e−δρj
∏
j∈Vs

δρj

▶ The limit as δ → 0 of the above process is our continuous-time Markov chain.
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SPIKE-TIMING-DEPENDENT PLASTICITY

▶ How do we train the weights wij? An experimentally-observed method is STDP (Bi & Poo
1998). Update depends on temporal order of and interval between pre-spike and post-spike.

▶ How do we train the weights in a model with hidden variables?

4Asl, Mojtaba Madadi. "Propagation delays determine the effects of synaptic plasticity on the structure and dynamics of neuronal networks." (2018).
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Part II

RELATIVE INFORMATION
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HIDDEN VARIABLES

Setup
▶ Observed variable X
▶ Hidden variable Z
▶ True distribution q(X)

▶ Model distribution pθ(X,Z) parametrized by θ

▶ Marginal distribution pθ(X) =
∫

pθ(X,Z)dZ

Goal
▶ Find θ minimizing the (relative) information or Kullback-Leibler divergence of X from pθ to q.

Iq∥pθ(X) =

∫
q(X) log

q(X)

pθ(X)
dX

10 / 30



VARIATIONAL INFERENCE

Trick.
▶ Introduce distribution q(Z|X) as extra parameter for optimization
▶ Discriminative distribution q(X,Z) = q(Z|X)q(X)

▶ Generative distribution pθ(X,Z) = pθ(X|Z)pθ(Z)
▶ Minimize

Iq∥pθ(X,Z) =
∫

q(X,Z) log
q(X,Z)
pθ(X,Z)

dXdZ

by alternatingly varying q(Z|X) while holding pθ(X,Z) fixed, and vice versa.

Variants.
▶ EM algorithm (Dempster-Laird-Rubin)5. Let q(Z|X) be pθ(Z|X) at each step of the optimization.
▶ em algorithm (Amari)6. Let q(Z|X) be parametrized qλ(Z|X) and alternatingly optimize θ and λ.
▶ Amari’s em algorithm is biologically more plausible because Bayesian inversion is hard!

5Dempster, A.P., N.M. Laird, and D.B. Rubin. "Maximum likelihood from incomplete data via the EM algorithm." JRSS 39, no. 1 (1977): 1-22.
6Amari, Shun-ichi. "Information geometry of the EM and em algorithms for neural networks." Neural networks 8, no. 9 (1995): 1379-1408.
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CONDITIONAL RELATIVE INFORMATION

▶ A powerful concept is the (conditional relative) information of Z given X from pθ to q.

Iq∥pθ(Z|X) =

∫
q(X)

(∫
q(Z|X) log

q(Z|X)

pθ(Z|X)
dZ

)
dX

▶ It satisfies a fundamental lemma, the Chain Rule.

Iq∥pθ(Z,X) = Iq∥pθ(Z|X) + Iq∥pθ(X)

▶ In the EM/em algorithms,
• Iq∥pθ(Z|X) is minimized in the E/e-step, and
• Iq∥pθ(Z,X) is minimized in the M/m-step.
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TIME SERIES WITH MEMORY

▶ Time. Assume discrete time for simplicity.
▶ Environment. X1,X2, . . .. Immutable. Possibly partially hidden.
▶ Memory. Z1,Z2, . . .. Mutable. Not latent/hidden variables!

▶ Goal. Optimize use of limited memory for predicting environment.
▶ Objective. Minimize

lim
T→∞

1
T

Iq∥pθ(X1...T,Z1...T)
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INFORMATION CONSTRAINTS

Put different constraints on structure of q(Z1...T|X1...T) =
∏

k q(Zk+1|Z1...k,X1...T).
Let p∗ denote the resulting pθ that minimizes Iq∥pθ(X1...T,Z1...T).

▶ No constraints. q(Z1...T|X1...T) =
∏

k q(Zk+1|Z1...k,X1...T). Optimal Ifree = Iq∥p∗(X1...T).

▶ Online learning. q(Z1...T|X1...T) =
∏

k q(Zk+1|Z1...k,X1...k). Optimal Ionline > Ifree.

▶ Limited memory. q(Z1...T|X1...T) =
∏

k q(Zk+1|Zk,Xk). Optimal Imem > Ionline.
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RELATIVE INFORMATION RATE

▶ Assume limited memory, i.e. Markov process q(Z1...T|X1...T) =
∏

k q(Zk+1|Zk,Xk).
▶ Assume q has stationary distribution π̄.
▶ Let q̄ be same Markov process but with initial distribution π̄.

▶ Using Kingman’s subadditive ergodic theory7 and under mild regularity conditions8,

lim
T→∞

1
T

Iq∥p(X1...T,Z1...T) = Iq̄∥p(Z2,X2|Z1,X1).

▶ In continuous-time, we get the (relative) information rate

lim
T→∞

1
T

Iq∥p(X1...T,Z1...T) =
d
dt

Iq̄∥p(X1...1+t,Z1...1+t)

∣∣∣∣
t=0

.

7https://en.wikipedia.org/wiki/Kingman%27s_subadditive_ergodic_theorem
8Brian G Leroux. "Maximum-likelihood estimation for hidden markov models." Stochastic processes and their applications, 40(1):127–143, 1992.
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STOCHASTIC APPROXIMATION

Setup. Parametric models qλ(Zn+1|Zn,Xn) and pθ(Zn+1,Xn+1|Zn,Xn).

Goal. Minimize information Iq̄∥p(Z2,X2|Z1,X1).

Stochastic Approximation.9

1. Sample environment Xn+1 from true distribution q(Xn+1|Xn).
2. Sample memory Zn+1 from discriminatory distribution qλ(Zn+1|Zn,Xn).
3. Sample the generator gradient ∇θ Iq̄∥p(Z2,X2|Z1,X1) using Zn+1,Xn+1.
4. Sample the discriminator gradient ∇λ Iq̄∥p(Z2,X2|Z1,X1) using Zn+1,Xn+1.
5. Update parameters θ, λ and repeat until convergence.

9Robbins, Herbert, and Sutton Monro. "A stochastic approximation method." The annals of mathematical statistics (1951): 400-407.
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STOCHASTIC GRADIENTS

Generator.

∇θ Iq̄∥p(Z2,X2|Z1,X1)

= lim
T→∞

Eq [∇θ log pθ(ZT+1,XT+1|ZT,XT)]

Discriminator.

∇λ Iq̄∥p(Z2,X2|Z1,X1)

= lim
T→∞

Eq

[( T∑
i=1

∇λ log qλ(Zi+1|Zi,Xi)
)

︸ ︷︷ ︸
momentum

log
qλ(ZT+1,XT+1|ZT,XT)

pθ(ZT+1,XT+1|ZT,XT)︸ ︷︷ ︸
surprise

]

▶ Use discounted momentum (scale summands by some τT−i with τ<1) for numerical stability.
▶ Same as reinforcement learning with surprise as reward (policy gradient for average reward)10.

10Karimi, Belhal, Blazej Miasojedow, Eric Moulines, and Hoi-To Wai. "Non-asymptotic analysis of biased stochastic approximation scheme." PMLR 2019 pp. 1944-1974.
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ONLINE LEARNING

1. Get next observation.
Xn+1 ∼ q(Xn+1|Xn)

2. Sample next memory state.
Zn+1 ∼ qλn(Zn+1|Zn,Xn)

3. Update generator.

θn+1 = θn + ηn+1
d
dθ

log pθ(Zn+1,Xn+1|Zn,Xn)

∣∣∣∣
θ=θn

4. Update momentum.

αn+1 = ταn +
d

dλ
log qλ(Zn+1|Zn,Xn)

∣∣∣∣
λ=λn

5. Update surprise.

γn+1 = ξ(Xn+1|Xn) + log
qλn(Zn+1|Zn,Xn)

pθn(Zn+1,Xn+1|Zn,Xn)

ξ(Xn+1|Xn) is any estimate of log q(Xn+1|Xn)

6. Update discriminator.
λn+1 = λn − ηn+1αn+1γn+1
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Part III

ONLINE SPIKE LEARNING
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DISCRIMINATOR NETWORKS

(a) Generator Network (b) Discriminator Network

▶ To train our generative spiking network with Amari’s em algorithm, we introduce a discriminator
network — it has the same neurons but a different set of synapses.

▶ Let the weights and transition rates of the generative network be w(p)
ij and Γ

(p)
cc′ respectively.

▶ Let the weights and transition rates of the discriminative network be w(q)
ij and Γ

(q)
cc′ respectively.

▶ Idea of introducing discriminator networks is not new — see Rezende & Gerstner 2014.11

11Rezende, D. J., and W. Gerstner. "Stochastic variational learning in recurrent neural networks." Frontiers Comput. Neurosci., 8:38, 2014.
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INFORMATION RATE

▶ Recall that the probability of a path x0...T with jumps c0, c1, . . . , cn is

p(x0...T) = π(c0)
(γT)n

n!
e−γT

n−1∏
i=0

Pcici+1 , where Pcc′ =

{
Γcc′/γ if c′ ̸= c,
1 − Γcc/γ otherwise.

▶ Using this path distribution, we can show that the (relative) information rate is

d
dt

Iq̄∥p(X0...t)

∣∣∣∣
t=0

= lim
s→0

1
s

Iq̄∥p(X0...s|X0 = c0)

= lim
s→0

1
s

∑
c0

π̄(c0)
∑
x0...T

q(x0...s|c0) log
q(x0...s|c0)

p(x0...s|c0)

=
∑

c

π̄(c)

Γ(q)
cc − Γ

(p)
cc +

∑
c′ ̸=c

Γ
(q)
cc′ log

Γ
(q)
cc′

Γ
(p)
cc′


▶ Using the information rate and Amari’s em algorithm, we derive an online learning algorithm

for spiking networks in continuous-time.
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CONTINUOUS-TIME SPIKE LEARNING

1. At all time, compute

ρ
(p)
jt = ρ0 exp(βu(p)

jt ), u(p)
jt = u0 +

∑
ij∈E w(p)

ij cijt

ρ
(q)
jt = ρ0 exp(βu(q)

jt ), u(q)
jt = u0 +

∑
ij∈E w(q)

ij cijt

ẇ(p)
ijt = −ηt β ρ

(p)
jt cijt

ẇ(q)
ijt = −ηt αijt γt, α̇ijt = −β ρ

(q)
jt cijt − ϵαijt, γt =

∑
j∈V ρ

(p)
jt − ρ

(q)
jt

2. Environmental neurons spike with unknown rate

3. Memory neurons spike with rate ρ
(q)
jt

4. When some neuron j (environment or memory) spikes, update

w(p)
ijt += ηt β cijt

w(q)
ijt += −ηt αijt γt, α̇ijt = β cijt, γt = β(u(q)

jt − u(p)
jt )

Ignore w(q)
ijt update when neuron j is environmental.
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SPIKE-TIMING-DEPENDENT PLASTICITY

Conjecture. Our learning algorithm explains STDP.
▶ Learning not accomplished by pre-before-post and post-before-pre rules.
▶ Learning accomplished by gradual weight decay and post-spike increment.
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CONJECTURES AND EXTENSIONS

▶ Conjecture. Our learning algorithm also explains the triplet rule of STDP.

▶ Conjecture. Discriminator surprise explains dopamine-based neuromodulation.

▶ Think of the counts cijt as spike credits. Build a model where the credits decay with time, and
derive the corresponding learning algorithm.
• Conjecture. Credit decay is achieved with adaptation potentials.
• Conjecture. Credit decay explains refractoriness after a spike.
• Conjecture. Credit decay gives rise to discounted momentum.
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SINGULAR LEARNING

12Jesse Hoogland, "Physics I: The Thermodynamics of Learning",Singular Learning Theory and Alignment Summit 2023.
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Thank you!

shaoweilin.github.io
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Part IV

APPENDIX
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RELATIVE INFORMATION RATE

The relative information rate is given by

d
dt

Iq̄∥p(X0...t)

∣∣∣∣
t=0

= lim
s→0

1
s
[
IQ∥P(X0...s)− IQ∥P(X0)

]
Using the chain rule I(X,Y) = I(Y|X) + I(X),

d
dt

Iq̄∥p(X0...t)

∣∣∣∣
t=0

= lim
s→0

1
s

Iq̄∥p(X0...s|X0)

= lim
s→0

1
s

∑
c0

π̄(c0)
∑
x0...T

q(x0...s|c0) log
q(x0...s|c0)

p(x0...s|c0)

Let Γ∗,Γ be the transition rate matrices of q, p respectively. Let δ = 1/γ and

Pcc′ =

{
δΓcc′ if c′ ̸= c,
1 − δΓcc otherwise

, P∗
cc′ =

{
δΓ∗

cc′ if c′ ̸= c,
1 − δΓ∗

cc otherwise.
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RELATIVE INFORMATION RATE

We expand the relative information∑
x0...T

q(x0...s|c0) log
q(x0...s|c0)

p(x0...s|c0)

=

∞∑
n=0

∑
y1,...,yn

(s/δ)n

n!
e−s/δ ∏n−1

i=0 P∗
yiyi+1

log

∏n−1
i=0 P∗

yiyi+1∏n−1
i=0 Pyiyi+1

.

When n = 0, the summand vanishes because the right-most factor is log 1 = 0.
The higher order terms for n ≥ 2 vanish in the limit as s → 0. Hence,

lim
s→0

1
s

IQ∥P(X0...s|X0 = x0) =
∑

y1

1
δ

P∗
y0y1

log
P∗

y0y1

Py0y1
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RELATIVE INFORMATION RATE

When y0 = y1, we have P∗
y0y0

= 1 − δΓ∗
y0y0

≈ eδΓ
∗
y0y0 , so for very small δ,

1
δ

P∗
y0y1

log
P∗

y0y1

Py0y1

≈ 1
δ

eδΓ
∗
y0y0 log

eδΓ
∗
y0y0

eδΓy0y0

= eδΓ
∗
y0y0

(
Γ∗

y0y0
− Γy0y0

)
≈ Γ∗

y0y0
− Γy0y0

When y0 ̸= y1, we have P∗
y0y1

≈ δΓ∗
y0y1

, so

1
δ

P∗
y0y1

log
P∗

y0y1

Py0y1

=
1
δ
δΓ∗

y0y1
log

δΓ∗
y0y1

δΓy0y1

= Γ∗
y0y1

log
Γ∗

y0y1

Γy0y1

Putting it all together,

d
dt

Iq̄∥p(X0...t)

∣∣∣∣
t=0

=
∑

c

π̄(c)

Γ∗
cc − Γcc +

∑
c′ ̸=c

Γ∗
cc′ log

Γ∗
cc′

Γcc′



30 / 30


	Spiking neural networks
	Spiking Neural Networks
	Energy Consumption
	Spike Response Model
	Transition Rates
	Path Distribution
	Discrete Time Approximation
	Spike-Timing-Dependent Plasticity

	Relative Information
	Hidden Variables
	Variational Inference
	Conditional Relative Information
	Time Series with Memory
	Information Constraints
	Relative Information Rate
	Stochastic Approximation
	Stochastic Gradients
	Online Learning

	Online Spike Learning
	Discriminator Networks
	Information Rate
	Continuous-Time Spike Learning
	Spike-Timing-Dependent Plasticity
	Conjectures and Extensions
	Singular Learning
	

	Appendix
	Relative Information Rate
	Relative Information Rate
	Relative Information Rate


