Studying Model Asymptotics with Singular Learning Theory

Shaowei Lin (UC Berkeley) shaowei@math.berkeley.edu Joint work with Russell Steele (McGill)

13 July 2012 MMDS 2012, Stanford University Workshop on Algorithms for Modern Massive Data Sets

- Regression
- BIC

Integral Asymptotics

Singular Learning

RLCTs

Sparsity Penalties

Linear Regression

Sparsity Penalties

- Regression
- BIC

Integral Asymptotics

Singular Learning

RLCTs

Model $Y = \omega \cdot X + \varepsilon$, $Y \in \mathbb{R}$, $\omega, X \in \mathbb{R}^d$, $\varepsilon \in \mathcal{N}(0, 1)$ Data $(Y_1, X_1), \ldots, (Y_N, X_N)$

Least squares

 $\min_{\omega} \sum_{i=1}^{N} |Y_i - \omega \cdot X_i|^2$ Penalized regression $\min_{\omega} \sum_{i=1}^{N} |Y_i - \omega \cdot X_i|^2 + \pi(\omega)$

LASSO $\pi(\omega) = |\omega|_1 \cdot \beta$

Bayesian Info Criterion (BIC) $\pi(\omega) = |\omega|_0 \cdot \log N$

Parameter space is partitioned into regions (submodels).

Bayesian Information Criterion

Sparsity Penalties

• Regression

• BIC

Integral Asymptotics

Singular Learning

RLCTs

• Given region Ω of parameters and a prior $\varphi(\omega)d\omega$ on Ω , the *marginal likelihood* of the data is proportional to

$$Z_N = \int_{\Omega} e^{-Nf(\omega)} \varphi(\omega) d\omega$$

where $f(\omega) = \frac{1}{2N} \sum_{i=1}^{N} |Y_i - \omega \cdot X_i|^2$.

- Laplace approximation: Asymptotically as sample size $N \to \infty$, $-\log Z_N \approx Nf(\omega^*) + \frac{d}{2}\log N + O(1)$ where $\omega^* = \operatorname{argmin}_{\omega \in \Omega} f(\omega)$ and $d = \dim \Omega$.
- Studying model asymptotics allows us to derive the BIC.
 But Laplace approx only works when the model is regular.
 Many models in machine learning are *singular*,
 e.g. mixtures, neural networks, hidden variables.

Integral Asymptotics

- Estimation
- RLCT
- Geometry
- Desingularization
- Algorithm

Singular Learning

RLCTs

Integral Asymptotics

Estimating Integrals

Sparsity Penalties

- Integral Asymptotics
- Estimation
- RLCT
- Geometry
- Desingularization
- Algorithm

Singular Learning

RLCTs

Generally, there are three ways to estimate statistical integrals.

- 1. *Exact methods* Compute a closed form formula for the integral,
 - e.g. (Lin·Sturmfels·Xu, 2009).
- 2. Numerical methods
 - Approximate using Markov Chain Monte Carlo (MCMC) and other sampling techniques.
- 3. Asymptotic methods

Analyze how the integral behaves for large samples.

Real Log Canonical Threshold

Sparsity Penalties

Integral Asymptotics

- Estimation
- RLCT
- Geometry
- Desingularization
- Algorithm

Singular Learning

RLCTs

Asymptotic theory (Arnol'd.Guseĭn-Zade.Varchenko, 1985) states that for a Laplace integral,

$$Z(N) = \int_{\Omega} e^{-Nf(\omega)} \varphi(\omega) d\omega \approx e^{-Nf^*} \cdot CN^{-\lambda} (\log N)^{\theta - 1}$$

asymptotically as $N \to \infty$ for some positive constants C, λ, θ and where $f^* = \min_{\omega \in \Omega} f(\omega)$.

The pair (λ, θ) is the *real log canonical threshold* of $f(\omega)$ with respect to the measure $\varphi(\omega)d\omega$.

Geometry of the Integral

 $f(x,y) = x^2 + y^2$

 $f(x,y) = (xy)^2$

Sparsity Penalties

Integral Asymptotics

- Estimation
- RLCT
- Geometry
- Desingularization
- Algorithm

Singular Learning

RLCTs

$$Z(N) = \int_{\Omega} e^{-Nf(\omega)} \varphi(\omega) d\omega \approx e^{-Nf^*} \cdot CN^{-\lambda} (\log N)^{\theta - 1}$$

Integral asymptotics depend on *minimum locus* of exponent $f(\omega)$.

$$f(x,y) = x^{2} + y^{2}$$

$$f(x,y) = (xy)^{2}$$

$$f(x,y) = (y^{2} - x^{3})^{2}$$

Plots of integrand $e^{-Nf(x,y)}$ for N = 1 and N = 10

Desingularizations

Sparsity Penalties

Integral Asymptotics

- Estimation
- RLCT
- Geometry
- Desingularization
- Algorithm

Singular Learning

RLCTs

Let $\Omega \subset \mathbb{R}^d$ and $f:\Omega \to \mathbb{R}$ real analytic function.

• We say $\rho: U
ightarrow \Omega$ desingularizes f if

1. U is a d-dimensional real analytic manifold covered by coordinate patches U_1, \ldots, U_s (\simeq subsets of \mathbb{R}^d).

2. ρ is a proper real analytic map that is an isomorphism onto the subset $\{\omega \in \Omega : f(\omega) \neq 0\}$.

```
3. For each restriction \rho: U_i \to \Omega,

f \circ \rho(\mu) = a(\mu)\mu^{\kappa}, \quad \det \partial \rho(\mu) = b(\mu)\mu^{\tau}

where a(\mu) and b(\mu) are nonzero on U_i.
```

• Hironaka (1964) proved that desingularizations always exist.

Algorithm for Computing RLCTs

Sparsity Penalties

Integral Asymptotics

- Estimation
- RLCT
- Geometry
- Desingularization
- Algorithm

Singular Learning

RLCTs

- We know how to find RLCTs of monomial functions (AGV, 1985). $\int_{\Omega} e^{-N\omega_1^{\kappa_1}\cdots\omega_d^{\kappa_d}} \omega_1^{\tau_1}\cdots\omega_d^{\tau_d} d\omega \approx CN^{-\lambda} (\log N)^{\theta-1}$ where $\lambda = \min_i \frac{\tau_i+1}{\kappa_i}, \theta = |\{i: \frac{\tau_i+1}{\kappa_i} = \lambda\}|.$
- To compute the RLCT of any function $f(\omega)$:
 - 1. Find minimum f^* of f over Ω .
 - 2. Find a desingularization ρ for $f f^*$.
 - 3. Use AGV Theorem to find (λ_i, θ_i) on each patch U_i .
 - 4. $\lambda = \min\{\lambda_i\}, \ \theta = \max\{\theta_i : \lambda_i = \lambda\}.$
- The difficult part is finding a desingularization, e.g (Bravo·Encinas·Villamayor, 2005).

Integral Asymptotics

Singular Learning

- Sumio Watanabe
- Bayesian Statistics
- Standard Form
- Learning Coefficient
- Geometry
- AIC and DIC

RLCTs

Singular Learning Theory

Sumio Watanabe

Sparsity Penalties

Integral Asymptotics

Singular Learning

- Sumio Watanabe
- Bayesian Statistics
- Standard Form
- Learning Coefficient
- Geometry
- AIC and DIC

```
RLCTs
```


Sumio Watanabe

Heisuke Hironaka

In 1998, Sumio Watanabe discovered how to study the asymptotic behavior of singular models. His insight was to use a deep result in algebraic geometry known as *Hironaka's Resolution of Singularities*.

Heisuke Hironaka proved this celebrated result in 1964. His accomplishment won him the Field's Medal in 1970.

Bayesian Statistics

Sparsity Penalties

Integral Asymptotics

Singular Learning

- Sumio Watanabe
- Bayesian Statistics
- Standard Form
- Learning Coefficient
- Geometry
- AIC and DIC

RLCTs

random variable with state space \mathcal{X} (e.g. $\{1, 2, \ldots, k\}$, \mathbb{R}^k) X Δ space of probability distributions on \mathcal{X}

$\mathcal{M}\subset \Delta$	statistical model, image of $p:\Omega ightarrow\Delta$
Ω	parameter space
$p(x \omega)dx$	distribution at $\omega\in\Omega$
$arphi(\omega)d\omega$	prior distribution on Ω

Suppose samples X_1, \ldots, X_N drawn from *true distribution* $q \in \mathcal{M}$. $Z_N = \int_{\Omega} \prod_{i=1}^N p(X_i | \omega) \varphi(\omega) d\omega.$ Marginal likelihood Kullback-Leibler function $K(\omega) = \int_{\mathcal{V}} q(x) \log \frac{q(x)}{p(x|\omega)} dx.$

Standard Form of Log Likelihood Ratio

Sparsity Penalties

Integral Asymptotics

Singular Learning

- Sumio Watanabe
- Bayesian Statistics
- Standard Form
- Learning Coefficient
- Geometry
- AIC and DIC

RLCTs

Define log likelihood ratio. Note that its expectation is $K(\omega)$.

$$K_N(\omega) = \frac{1}{N} \sum_{i=1}^N \log \frac{q(X_i)}{p(X_i|\omega)}$$

Standard Form of Log Likelihood Ratio (Watanabe)

If $\rho: U \to \Omega$ desingularizes $K(\omega)$, then on each patch U_i ,

$$K_N \circ \rho(\mu) = \mu^{2\kappa} - \frac{1}{\sqrt{N}} \mu^{\kappa} \xi_N(\mu)$$

where $\xi_N(\mu)$ converges in law to a Gaussian process on U.

For regular models, this is a *Central Limit Theorem*.

Learning Coefficient

Sparsity Penalties

Integral Asymptotics

Singular Learning

- Sumio Watanabe
- Bayesian Statistics
- Standard Form
- Learning Coefficient
- Geometry
- AIC and DIC

RLCTs

Define empirical entropy $S_N = -\frac{1}{N} \sum_{i=1}^N \log q(X_i)$.

Convergence of stochastic complexity (Watanabe) The stochastic complexity has the asymptotic expansion $-\log Z_N = NS_N + \lambda_q \log N - (\theta_q - 1) \log \log N + O_p(1)$ where λ_q, θ_q describe the asymptotics of the deterministic integral $Z(N) = \int_{\Omega} e^{-NK(\omega)} \varphi(\omega) d\omega \approx CN^{-\lambda_q} (\log N)^{\theta_q - 1}.$

For regular models, this is the Bayesian Information Criterion. Various names for (λ_q, θ_q) : statistics - *learning coefficient* of the model \mathcal{M} at qalgebraic geometry - real log canonical threshold of $K(\omega)$

Geometry of Singular Models

Sparsity Penalties

Integral Asymptotics

Singular Learning

- Sumio Watanabe
- Bayesian Statistics
- Standard Form
- Learning Coefficient
- Geometry
- AIC and DIC

RLCTs

AIC and DIC

Sparsity Penalties

Integral Asymptotics

Singular Learning

- Sumio Watanabe
- Bayesian Statistics
- Standard Form
- Learning Coefficient
- Geometry
- AIC and DIC

RLCTs

Bayes generalization error B_N . The Kullback-Leibler distance from the true distribution q(x) to the predictive distribution p(x|D).

Asymptotically, B_N is equivalent to

• Akaike Information Criterion for regular models

$$AIC = -\sum_{i=1}^{N} \log p(X_i | \omega^*) + d$$

• Akaike Information Criterion for singular models $AIC = -\sum_{i=1}^{N} \log p(X_i | \omega^*) + 2(singular fluctuation)$

Numerically, B_N can be estimated using MCMC methods.

Deviance Information Criterion for regular models

 $\mathsf{DIC} = \mathbb{E}_X[\log p(X|\mathbb{E}_{\omega}[\omega])] - 2\mathbb{E}_{\omega}[\mathbb{E}_X[\log p(X|\omega)]]$

• Widely Applicable Information Criterion for singular models WAIC = $\mathbb{E}_X[\log \mathbb{E}_{\omega}[p(X|\omega)]] - 2\mathbb{E}_{\omega}[\mathbb{E}_X[\log p(X|\omega)]]$

Integral Asymptotics

Singular Learning

RLCTs

- Sparsity Penalty
- Newton Polyhedra
- Upper Bounds

Real Log Canonical Thresholds

Sparsity Penalty

Sparsity Penalties

Integral Asymptotics

Singular Learning

RLCTs

- Sparsity Penalty
- Newton Polyhedra
- Upper Bounds

Local RLCTs. Given $x \in \Omega$, there exist a small nbhd $\Omega_x \subset \Omega$ of x and exponents (λ_x, θ_x) such that for all nbhds $U \subset \Omega_x$ of x,

$$\int_{U} e^{-Nf(\omega)} \varphi(\omega) d\omega \approx C N^{-\lambda_x} (\log N)^{\theta_x - 1}.$$

Maximum likelihood estimation. Find $\min_{\omega \in \Omega} \ell_N(\omega)$ where

$$\ell_N(\omega) = -\sum_{i=1}^N \log p(X_i|\omega).$$

Sparsity penalty for MLE. Find $\min_{\omega \in \Omega} \ell_N(\omega) + \pi(\omega)$ where $\pi(\omega) = \lambda_\omega \log N - (\theta_\omega - 1) \log \log N.$

This is a generalization of the BIC to singular models. It can also teach us how to penalize parameters appropriately in LASSO.

Newton Polyhedra

Sparsity Penalties

Integral Asymptotics

Singular Learning

RLCTs

- Sparsity Penalty
- Newton Polyhedra
- Upper Bounds

The τ -distance is $l_{\tau} = 8/5$ and the multiplicity is $\theta_{\tau} = 1$.

Newton Polyhedra

Sparsity Penalties

Integral Asymptotics

Singular Learning

RLCTs

- Sparsity Penalty
- Newton Polyhedra
- Upper Bounds

The τ -distance is $l_{\tau} = 1$ and the multiplicity is $\theta_{\tau} = 2$.

Upper Bounds for RLCTs

Sparsity Penalties

Integral Asymptotics

Singular Learning

RLCTs

- Sparsity Penalty
- Newton Polyhedra
- Upper Bounds

Given a power series $f(\omega) \subset \mathbb{R}[\omega_1, \ldots, \omega_d]$,

- 1. Plot $\alpha \in \mathbb{R}^d$ for each monomial ω^{α} appearing in $f(\omega)$.
- 2. Take the convex hull $\mathcal{P}(I)$ of all plotted points.

This convex hull $\mathcal{P}(f)$ is the *Newton polyhedron* of f.

Given a vector $au \in \mathbb{Z}^d_{>0}$, define

- 1. τ -distance $l_{\tau} = \min\{t : t\tau \in \mathcal{P}(I)\}.$
- 2. *multiplicity* $\theta_{\tau} = \text{codim of face of } \mathcal{P}(I)$ at this intersection.

Upper bound and equality for RLCTs at the origin

If l_{τ} is the τ -distance of $\mathcal{P}(f)$ and θ_{τ} is its multiplicity, then the RLCT (λ_0, θ_0) of f with respect to $\omega^{\tau-1} d\omega$ satisfies

 $(\lambda_0, \theta_0) \le (1/l_\tau, \theta_\tau).$

Equality occurs when f is a sum of squares of monomials.

Integral Asymptotics

Singular Learning

RLCTs

• Sparsity Penalty

Newton Polyhedra

• Upper Bounds

Thank you!

"Algebraic Methods for Evaluating Integrals in Bayesian Statistics" http://math.berkeley.edu/~shaowei/swthesis.pdf (PhD dissertation, May 2011)

References

Sparsity Penalties

Integral Asymptotics

Singular Learning

- RLCTs
- Sparsity Penalty
- Newton Polyhedra
- Upper Bounds

1. V. I. ARNOL'D, S. M. GUSEĬN-ZADE AND A. N. VARCHENKO: Singularities of Differentiable Maps, Vol. II, Birkhäuser, Boston, 1985.

- A. BRAVO, S. ENCINAS AND O. VILLAMAYOR: A simplified proof of desingularisation and applications, *Rev. Math. Iberoamericana* 21 (2005) 349–458.
- 3. H. HIRONAKA: Resolution of singularities of an algebraic variety over a field of characteristic zero I, II, *Ann. of Math.* (2) **79** (1964) 109–203.
- S. LIN, B. STURMFELS AND Z. XU: Marginal likelihood integrals for mixtures of independence models, *J. Mach. Learn. Res.* 10 (2009) 1611–1631.
- 5. S. LIN: Algebraic methods for evaluating integrals in Bayesian statistics, PhD dissertation, Dept. Mathematics, UC Berkeley (2011).
- S. WATANABE: Algebraic Geometry and Statistical Learning Theory, Cambridge Monographs on Applied and Computational Mathematics 25, Cambridge University Press, Cambridge, 2009.

Integral Asymptotics

Singular Learning

RLCTs

Supplementary Material

Higher Order Asymptotics

Sparsity Penalties

Integral Asymptotics

Singular Learning

RLCTs

Using fiber ideals and toric blowups, we were able to compute higher order asymptotics of the statistical integral

$$Z(N) = \int_{[0,1]^2} (1 - x^2 y^2)^{N/2} \, dx dy \approx$$

$$\sqrt{\frac{\pi}{8}} N^{-\frac{1}{2}} \log N \qquad -\sqrt{\frac{\pi}{8}} \left(\frac{1}{\log 2} - 2\log 2 - \gamma\right) N^{-\frac{1}{2}} \\
-\frac{1}{4} N^{-1} \log N \qquad +\frac{1}{4} \left(\frac{1}{\log 2} + 1 - \gamma\right) N^{-1} \\
-\frac{\sqrt{2\pi}}{128} N^{-\frac{3}{2}} \log N \qquad +\frac{\sqrt{2\pi}}{128} \left(\frac{1}{\log 2} - 2\log 2 - \frac{10}{3} - \gamma\right) N^{-\frac{3}{2}} \\
-\frac{1}{24} N^{-2} + \cdots$$

Euler-Mascheroni constant
$$\gamma = \lim_{n \to \infty} \left(\sum_{k=1}^n \frac{1}{k} - \log n \right) \approx 0.5772156649.$$

Learning Coefficients for Schizo Patients

Sparsity Penalties

Integral Asymptotics

Singular Learning

RLCTs

$$Z_N = \int_{\Omega} \prod_{i,j} p_{ij}(\omega)^{U_{ij}} \varphi(\omega) d\omega$$

Using Watanabe's Singular Learning Theory,

$$-\log Z_N \approx -\sum_{i,j} U_{ij} \log q_{ij} + \lambda_q \log N - (\theta_q - 1) \log \log N$$

where the *learning coefficient* (λ_q, θ_q) is given by

$$(\lambda_q, \theta_q) = \begin{cases} (5/2, 1) & \text{if } \operatorname{rank} q = 1, \\ (7/2, 1) & \text{if } \operatorname{rank} q = 2, q \notin \begin{bmatrix} 0 & \times \\ \times & \times \end{bmatrix} \cup \begin{bmatrix} 0 & \times \\ \times & 0 \end{bmatrix}, \\ (4, 1) & \text{if } \operatorname{rank} q = 2, q \in \begin{bmatrix} 0 & \times \\ \times & \times \end{bmatrix} \setminus \begin{bmatrix} 0 & \times \\ \times & 0 \end{bmatrix}, \\ (9/2, 1) & \text{if } \operatorname{rank} q = 2, q \in \begin{bmatrix} 0 & \times \\ \times & 0 \end{bmatrix}. \end{cases}$$

Here, $q \in \begin{bmatrix} 0 & \times \\ \times & \times \end{bmatrix}$ if for some $i, j, q_{ii} = 0$ and $q_{ij} q_{ji} q_{jj} \neq 0$, $q \in \begin{bmatrix} 0 & \times \\ \times & 0 \end{bmatrix}$ if for some $i, j, q_{ii} = q_{jj} = 0$ and $q_{ij} q_{ji} \neq 0$.