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Motivation. A pressing challenge in artificial intelligence (AI) is connecting the interpretability of
logic-based AI with the promising prediction performance of machine-learning-based AI. Knowledge
graphs (KGs) are prominently subject to this challenge, as real-world KGs are highly incomplete [10],
employing logic- or machine-learning-based completion approaches. KG embedding models (KGEs)
that embed KGs into vector spaces show promising performance for knowledge graph completion
(KGC) [9], i.e., predicting missing links. In the spirit of neuro-symbolic AI, geometric KGEs that
embed entities and relations as geometric shapes in vector spaces allow for an intuitive geometric
interpretation of their learned rules. However, significant challenges remain that need to be overcome.
On the one hand, composition rules are ubiquitous for reasoning in KGs, as they infer links based on
paths through the KG. However, existing KGEs capture an extremely limited notion of composition
[12, 1, 5, 3], precisely compositional definition and not general composition (formally defined in
Table 1). On the other hand, while most KGEs can learn compositional definition [2, 7, 12, 5] or
hierarchy rules [11, 4, 8, 1] individually, they cannot capture both rules jointly (see Table 1).

Table 1: This table summarizes the inference capabilities of several KGEs. In particular, a ✓ indicates
that a KGE can learn the specific logical rule, and an ✗ displays that it cannot learn the rule.

Logical Rule ExpressivE BoxE RotatE TransE DistMult ComplEx

Symmetry: r1(X,Y ) ⇒ r1(Y,X) ✓ ✓ ✓ ✗ ✓ ✓
Anti-symmetry: r1(X,Y ) ⇒ ¬r1(Y,X) ✓ ✓ ✓ ✓ ✗ ✓
Inversion: r1(X,Y ) ⇔ r2(Y,X) ✓ ✓ ✓ ✓ ✗ ✓
Comp. def.: r1(X,Y ) ∧ r2(Y,Z) ⇔ r3(X,Z) ✓ ✗ ✓ ✓ ✗ ✗
Gen. comp.: r1(X,Y ) ∧ r2(Y,Z) ⇒ r3(X,Z) ✓ ✗ ✗ ✗ ✗ ✗
Hierarchy: r1(X,Y ) ⇒ r2(X,Y ) ✓ ✓ ✗ ✗ ✓ ✓
Intersection: r1(X,Y ) ∧ r2(X,Y ) ⇒ r3(X,Y ) ✓ ✓ ✓ ✓ ✗ ✗
Mutual exclusion: r1(X,Y ) ∧ r2(X,Y ) ⇒ ⊥ ✓ ✓ ✓ ✓ ✓ ✓

Problem and Contribution. The vast amount of research on KGEs that can learn composition
[2, 7, 12, 5] and hierarchy [11, 8, 4, 1] rules emphasizes their importance for KGC. However, any
KGE so far cannot (1) learn general composition rules, (2) jointly learn composition and hierarchy
rules, and (3) provide a geometric interpretation of its learned rules. Facing these challenges, we
present the results of our top 25% paper accepted at ICLR 2023 [6], of which this paper is an extended
abstract. Specifically, we (i) present the ExpressivE model and its virtual triple space, which allows
us to geometrically interpret rules learned by an ExpressivE embedding, (ii) prove that ExpressivE
can learn any rule of Table 1, the first such KGE, and (iii) benchmark ExpressivE, revealing that it is
competitive with contemporary KGEs, even significantly outperforming them on some datasets.

Background. KGs can be depicted as extensive collections of triples ri(eh, et) drawn from a finite
set of relations ri ∈ R and entities eh, et ∈ E. Given a triple ri(eh, et), eh is referred to as its head
and et as its tail. In the rest of the paper, we adhere to the standard definition for learning logical rules
(termed capturing), as outlined in [7, 1, 6]. Essentially, this implies that a KGE captures a rule if a
set of parameters exists such that the logical rule is learned exactly (i.e., the KGE predicts any triple
inferrable by the rule) and exclusively (i.e., the KGE’s predictions do not support any unwanted rule).
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ExpressivE represents entities ej ∈ E as vectors ej ∈ Rd in the embedding space Rd and relations
ri ∈ R as hyper-parallelograms in the virtual triple space R2d (see Figure 1a). For each arity position
p ∈ {h, t} of a relation ri, ExpressivE assigns a slope vector rpi ∈ Rd, a center vector cpi ∈ Rd, and
a width vector dp

i ∈ (R≥0)
d, defining the hyper-parallelogram’s boundaries. A triple ri(eh, et) is

true in an ExpressivE model if the embeddings of ri, eh, and et satisfy the inequalities below:

(eh − chi − rti ⊙ et)
|.| ⪯ dh

i , (et − cti − rhi ⊙ eh)
|.| ⪯ dt

i

Notation. The notation x|.| denotes the element-wise absolute value of a vector x, ⊙ denotes
the Hadamard product, and ⪯ denotes the element-wise less-than-or-equal-to operator. Due to the
intricate nature of interpreting this model in the embedding space Rd, we introduce the virtual triple
space R2d to facilitate the interpretation of ExpressivE’s parameters and inference capabilities.

(a) (b)

Figure 1: The figures show (a) the interpretation of ExpressivE’s relation parameters (orange dashed)
as a parallelogram (green solid) in the j-th correlation subspace; (b) multiple relation parallelograms
that satisfy the following rules in the j-th dimension: rB (Symmetry); rA, rD, rE , and rF (Anti-
Symmetry); rD = r−1

A (Inversion); rA(X,Y ) ⇒ rC(X,Y ) (Hierarchy); rD(X,Y ) ∧ rE(X,Y ) ⇒
rF (X,Y ) (Intersection); and e.g., rA(X,Y ) ∧ rB(X,Y ) ⇒ ⊥ (Mutual Exclusion).

Virtual Triple Space. To construct the virtual triple space R2d, the head eh and tail embeddings et
are concatenated. We refer to the 2-dimensional sub-space of R2d, formed from the j-th dimension
of eh and et, as the j-th correlation subspace since it visualizes this dimension’s captured logical
rules. As depicted in Figure 1a, the relation parameters can be interpreted as a hyper-parallelogram in
R2d. With these concepts in place, we proceed to analyze ExpressivE’s theoretical capabilities.
Theorem 1. ExpressivE is fully expressive, i.e., for any arbitrary graph G over R and E, there is an
ExpressivE embedding with finite dimensionality d (in particular, d in O(|E| ∗ |R|)) capturing G.

Logical Rules. Theorem 2 shows that ExpressivE captures common logical rules in KGE literature
[2, 7, 11, 8, 4, 1]. Figure 1b illustrates how ExpressivE embeddings with d = 1 capture various rules.
Theorem 2. ExpressivE captures (a) symmetry, (b) anti-symmetry, (c) inversion, (d) hierarchy, (e)
intersection, (f) mutual exclusion, (g) general composition, and (h) compositional definition.

ExpressivE’s Relatives. As delineated by [6], geometric KGEs can be categorized into three families:
Functional KGEs, which embed relations as functions; bilinear KGEs, which embed relations as
bilinear products; and spatial KGEs, which embed relations as regions. Notably, ExpressivE is the
pioneering KGE that belongs to both the spatial and functional families. Among its closest relatives,
BoxE [1] aligns with the spatial family, while RotatE [7] aligns with the functional family.

Space Efficiency. While RotatE and BoxE employ (2|E|+ 2|R|)d, ExpressivE embeddings employ
(|E|+ 6|R|)d parameters. Given that in the majority of graphs |R| ≪ |E| holds, it is noteworthy
that ExpressivE halves the parameter count of BoxE and RotatE for a d-dimensional embedding.

Benchmark Results. In our final evaluation, we benchmarked ExpressivE on the standard KGC
benchmarks WN18RR and FB15k-237. The results indicate that ExpressivE, despite having only
half the number of parameters compared to BoxE and RotatE, excels within its own model fam-
ily on FB15k-237, reaching competitive results with state-of-the-art KGEs. Notably, ExpressivE
significantly outperforms all competing KGEs on WN18RR.
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[1] R. Abboud, İ. İ. Ceylan, T. Lukasiewicz, and T. Salvatori. Boxe: A box embedding model

for knowledge base completion. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and
H. Lin, editors, Advances in Neural Information Processing Systems 33: Conference on Neural
Information Processing Systems, 2020.

[2] A. Bordes, N. Usunier, A. García-Durán, J. Weston, and O. Yakhnenko. Translating embeddings
for modeling multi-relational data. In C. J. C. Burges, L. Bottou, Z. Ghahramani, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems 26: 27th Conference
on Neural Information Processing Systems 2013., pages 2787–2795, 2013.

[3] C. Gao, C. Sun, L. Shan, L. Lin, and M. Wang. Rotate3d: Representing relations as rotations in
three-dimensional space for knowledge graph embedding. In M. d’Aquin, S. Dietze, C. Hauff,
E. Curry, and P. Cudré-Mauroux, editors, CIKM ’20: The 29th ACM International Conference
on Information and Knowledge Management, pages 385–394. ACM, 2020.

[4] S. M. Kazemi and D. Poole. Simple embedding for link prediction in knowledge graphs. In
S. Bengio, H. M. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors,
Advances in Neural Information Processing Systems 31: Conference on Neural Information
Processing Systems, pages 4289–4300, 2018.

[5] H. Lu and H. Hu. Dense: An enhanced non-abelian group representation for knowledge graph
embedding. CoRR, abs/2008.04548, 2020.

[6] A. Pavlovic and E. Sallinger. Expressive: A spatio-functional embedding for knowledge graph
completion. In The Eleventh International Conference on Learning Representations, 2023.

[7] Z. Sun, Z. Deng, J. Nie, and J. Tang. Rotate: Knowledge graph embedding by relational rotation
in complex space. In 7th International Conference on Learning Representations, 2019.

[8] T. Trouillon, J. Welbl, S. Riedel, É. Gaussier, and G. Bouchard. Complex embeddings for
simple link prediction. In M. Balcan and K. Q. Weinberger, editors, Proceedings of the 33nd
International Conference on Machine Learning, volume 48 of JMLR Workshop and Conference
Proceedings, pages 2071–2080. JMLR.org, 2016.

[9] Q. Wang, Z. Mao, B. Wang, and L. Guo. Knowledge graph embedding: A survey of approaches
and applications. IEEE Transactions on Knowledge and Data Engineering, (12):2724–2743,
2017.

[10] R. West, E. Gabrilovich, K. Murphy, S. Sun, R. Gupta, and D. Lin. Knowledge base completion
via search-based question answering. In Proceedings of the 23rd International Conference on
World Wide Web, WWW ’14, page 515–526. Association for Computing Machinery, 2014.

[11] B. Yang, W. Yih, X. He, J. Gao, and L. Deng. Embedding entities and relations for learning and
inference in knowledge bases. In Y. Bengio and Y. LeCun, editors, 3rd International Conference
on Learning Representations, 2015.

[12] S. Zhang, Y. Tay, L. Yao, and Q. Liu. Quaternion knowledge graph embeddings. In H. M.
Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems 32: Conference on Neural Information
Processing Systems, pages 2731–2741, 2019.

3


