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INTRODUCTION The recent surge in generative AI, particularly involving large language models
(LLMs), has demonstrated their wide-ranging applicability across various domains [1, 2]. These
models have enhanced the functionality of tools for search-based interactions [3, 4, 5], program
synthesis [6, 7, 8], chat-based interactions [9, 10, 11], and many more. Moreover, language-based
approaches have facilitated connections between different modalities, enabling text-to-image [12, 13],
text-to-video [14], text-to-3D [15], text-to-audio [16, 17], and text-to-code [18, 19, 20] transforma-
tions, to name a few. Therefore, by training on vast quantities of unlabelled textual data, LLMs have
been shown to not only store factual knowledge [21, 22] and approximate users intentions to some
extent [23], but also to unlock deep specialist capabilities through innovative prompting techniques
[24]. Yet, these applications merely scratch the surface of the transformation that language-based
interactions are expected to bring to human-computer interactions in both the near and distant future.

PROBLEM Conventional approaches employing foundation models for inference are predomi-
nantly confined to single-step or few-step executions and primarily reliant on hand-crafted in-context
learning prompt instructions. This restricted scope limits the utilization to single modalities, lacks
refinement or verification, and exhibits limited tool proficiency. We posit that the integration of
neuro-symbolic (NeSy) engines as core computation units, realized through logic-based method-
ologies coupled with sub-symbolic foundation models, offers a more general, robust, and verifiable
perspective. This approach has several advantages. Firstly, it facilitates the integration of pre-existing
engineered solutions (e.g. various classical algorithms), offloading computational complexity and
bridging various modalities. Secondly, it enables sub-symbolic generalization to focus on evidence-
based decision-making (e.g. selecting the respective tool based on in-context classification). Thirdly,
it provides an interpretable language-based control layer for explainable, autonomous systems.
Central to our solution is a method to define and measure the orchestration of interactions between
symbolic and sub-symbolic systems, and the level at which instructions are formulated for effective
control and task execution.

METHODOLOGY In light of the aforementioned considerations, we introduce our accepted paper
SymbolicAI1 [25], a compositional NeSy framework able to represent and manipulate multi-modal
and self-referential structures [26, 27]. Alongside the framework, we introduce a benchmark2 and
derive an empirical measure to address the evaluation of multi-step NeSy generative processes.
SymbolicAI augments the generative process of LLMs with functional zero- and few-shot learning
operations and enables the creation of versatile applications through in-context learning [28]. These
operations guide the generative process and facilitate a modular design with a wide range of existing
solvers, including formal language engines for mathematical expression evaluation, theorem provers,
knowledge bases, and search engines for information retrieval. It exposes these solvers as building
blocks for constructing computational graphs, and facilitates the development of an extensible
toolkit that bridges classical and differentiable programming paradigms, aiming to create domain-

1https://github.com/ExtensityAI/symbolicai.
2https://github.com/ExtensityAI/benchmark
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invariant problem solvers. In designing the architecture of SymbolicAI, we drew inspiration from the
body of evidence that suggests the human brain possesses a selective language processing module
[29, 30, 31, 32, 33, 34, 35], prior research on cognitive architectures [36, 37, 38, 39, 40], and the
significance of language on the structure of semantic maps in the human brain [41]. We consider
language as a central processing module, distinct from other cognitive processes such as reasoning or
memory [42, 43].

RESULTS We focus on the GPT family [44] of models GPT-3.5 Turbo (revision 1106) and GPT-
4 Turbo (revision 1106) as they are the most proficient models to this date; Gemini-Pro [11] as
the best performing model available through API from Google; LlaMA 2 13B [45] as it defines a
good reference implementation for available open-source LLMs from Meta; Mistral 7B [46] and
Zephyr 7B [47] as good baselines for revised and fine-tuned open-source contestants respectively.
The selected open-source models Mistral, Zephyr, and LlaMA 2 are expected to have roughly
equivalent parameter counts compared to GPT-3.5 Turbo and Gemini-Pro. All our experiments are
expected to require a context size smaller or equal to 4096 to enable the comparisons among the
in-context capabilities across model architectures. For LlaMA 2 we use the chat version since it
better follows instructions. In Figure 1 we compute the normalized similarity score for the following
base performance criteria based on our empirically derived measure, the "Vector Embedding for
Relational Trajectory Evaluation through Cross-similarity", or VERTEX score:
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1) Associative Prediction: We evaluate the success rate of models to follow simple and complex
instructions and associations with zero- and few-shot examples. We therefore address the proficient
use of our operators between Symbol types.
2) Multi-modal Binding: We perform data transformations between multiple modalities by binding
through language-based representations, and evaluate their proficiency in tool utilization, classification
and routing of requests to relevant modules.
3) Program Synthesis: We evaluate executable code with and without including concepts from
retrieval augmented generation, model-driven development, such as templating to direct the generative
flow, and experiment with self-generated instructions by creating self-referential expressions.
4) Functional Logic Components: We evaluate how well models can translate natural language
statements into logical expressions. This involves interpreting custom domain-specific languages
(DSLs) and producing higher-order logical expressions from type theory, which can then be evaluated
by symbolic math engines like SymPy or theorem provers like Z3.
5) Hierarchical Computational Graphs: We assess the models’ capability to orchestrate multi-step
generative processes and direct computational sub-processes. They need to associate results from
and to Symbol nodes, maintain relationships between nodes, and produce the next symbol prediction
conditioned on the current execution context. Our evaluation protocol analyzes and scores a series of
instructions while providing a structured basis for recording these processes.

Evaluation GPT-4 GPT-3.5 Gemini-Pro LlaMA 2 Mistral Zephyr Random

Associations 0.93 0.61 1.00 0.41 0.49 0.28 0.01
Modality 0.83 0.77 0.75 0.47 0.39 0.43 0.07
Code 0.78 0.58 0.53 0.10 0.19 0.13 0.00
Logic 0.41 0.44 0.39 0.44 0.46 0.43 0.00
Graphs 0.36 0.31 0.21 0.05 0.06 0.08 0.00

Total 0.66 0.54 0.58 0.30 0.32 0.27 0.02
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Figure 1: Benchmark: 1) Associative Prediction (Associations) 2) Multi-modal Binding (Modality)
3) Program Synthesis (Code) 4) Functional Logic Components (Logic) and 5) Hierarchical Computa-
tional Graphs (Graphs).
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