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Introduction & Motivation

● ML algorithms widely used across various domains for predictive tasks.

● However the effectiveness of ML models is constrained by the scarcity 
of annotated datasets needed for training accurate models.

● The challenge of limited annotated datasets for training ML models is 
particularly critical in domains where accuracy is crucial, such as 
medical diagnosis.
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Knowledge Graphs

● Use of KGs to enrich the data - enhance the 
performance.

● KGs provide a structured representation of 
domain-specific knowledge.

● By utilizing existing ontologies and KGs, we 
can infuse our datasets with rich, contextual 
information that goes beyond raw data.
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Preprocessing Knowledge Graphs

● Heart disease domain: 

 age, chest pain type, resting blood pressure, heart rate…

● Ontologies that describe the dataset’s features 

● Three different ontologies in the heart disease domain:

○ Small ontology - existing ontology from Trepan Reloaded [1]

○ Extended ontology - extended HFO ontology [2]

○ SNOMED ontology - extracted from SNOMED [3]
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Preprocessing Knowledge Graphs

● Mapped the features of the dataset to the concepts/relations

● KGs construction - population of the ontologies with dataset instances
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Knowledge Graphs infusion into ML pipeline
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Embedding as input

● Training ML learning with embeddings from KG only.
● Embeddings represent patients in vector space
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Enriching tabular data with embeddings

● For each patient, embedding vectors are added as extra columns.
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Feature Engineering from embeddings

● For each patient in the embedding space, their Euclidean distance 
to ‘disease’ and ‘no disease’ class is added.
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Experiment Setup

● Dataset: Heart disease prediction from Kaggle (303 patients)

● ML models: 

○ KNN, SVM, XGBoost, FFNN

● Metrics used : 

○ Accuracy, F2 Score

● Embedding algorithms: 

○ RDF2Vec, Node2vec
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Results
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Results - Impact of KG Size and Structure

● Different algorithms favor different KG 
characteristics

● NN best performance - Small KG

● KNN and XGB best performance - Extended 
KG
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Conclusion

● Using RDF2Vec and Node2Vec embeddings from KGs improves the accuracy and 
F2 scores - especially when distances to the classes are added as additional 
features 

● The performance of ML algorithms is affected by the size and structure of KGs, 
with different algorithms favoring different KG characteristics.

● Adding KG information to ML algorithms enhances performance across all models 
without altering their inherent performance hierarchy.



PAGE 15

Future work

● Apply this approach in various domains beyond heart disease.

● Investigate different embedding algorithms and use different ML 
algorithms.

● Measure data-dependency of ML algorithms and compare this with 
the complementary contributions from KGs.
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Questions?
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