

Expressive and Geometrically Interpretable Knowledge Graph Embeddings

Aleksandar Pavlović and Emanuel Sallinger

TU Wien

AIROV 2024

Expressive and Geometrically Interpretable Knowledge Graph Embeddings

Aleksandar Pavlović and Emanuel Sallinger

TU Wien

ExpressivE, ICLR 2023

AIROV 2024

Expressive and Geometrically Interpretable Knowledge Graph Embeddings

Aleksandar Pavlović and Emanuel Sallinger

TU Wien

ExpressivE, ICLR 2023

SpeedE, NAACL 2024

AIROV 2024

Knowledge Graph Completion

- Knowledge graphs are highly incomplete
 - 75% of the triples of Freebase lack a nationality (West et al., 2014)

Knowledge Graph Completion

- Knowledge graphs are highly incomplete
 - 75% of the triples of Freebase lack a nationality (West et al., 2014)

- Knowledge graph completion (KGC)
 - Automatically infer missing triples

Knowledge Graph Completion

- Knowledge graphs are highly incomplete
 - 75% of the triples of Freebase lack a nationality (West et al., 2014)

- Knowledge graph completion (KGC)
 - Automatically infer missing triples

- Knowledge graph embedding models (KGEs)
 - Embed knowledge graphs into vector spaces

(head) Elisabeth

- Functional Models
 - TransE (Bordes et al., 2013), RotatE (Sun et al., 2019)

Alice

- Functional Models
 - TransE (Bordes et al., 2013), RotatE (Sun et al., 2019)

Elisabeth

- Functional Models
 - TransE (Bordes et al., 2013), RotatE (Sun et al., 2019)

(head) mother of (tail) Elisabeth Alice

• Functional Models

• TransE (Bordes et al., 2013), RotatE (Sun et al., 2019)

• BoxE (Abboud et al., 2020)

- Functional Models
 - TransE (Bordes et al., 2013), RotatE (Sun et al., 2019)

- Functional Models
 - TransE (Bordes et al., 2013), RotatE (Sun et al., 2019)

- Functional Models
 - TransE (Bordes et al., 2013), RotatE (Sun et al., 2019)

• Functional Models

• TransE (Bordes et al., 2013), RotatE (Sun et al., 2019)

- Bilinear Models
 - ComplEx (Trouillon et al., 2016), TuckER (Balazevic et al., 2019)

• Functional Models

• TransE (Bordes et al., 2013), RotatE (Sun et al., 2019)

- Bilinear Models
 - ComplEx (Trouillon et al., 2016), TuckER (Balazevic et al., 2019)

• Functional Models

• TransE (Bordes et al., 2013), RotatE (Sun et al., 2019)

mother of

• Generalization capabilities

Inference Pattern

 $\begin{array}{l} \text{Symmetry: } r_1(X,Y) \Rightarrow r_1(Y,X) \\ \text{Anti-symmetry: } r_1(X,Y) \Rightarrow \neg r_1(Y,X) \\ \text{Inversion: } r_1(X,Y) \Leftrightarrow r_2(Y,X) \\ \text{Comp. def.: } r_1(X,Y) \wedge r_2(Y,Z) \Leftrightarrow r_3(X,Z) \\ \text{Gen. comp.: } r_1(X,Y) \wedge r_2(Y,Z) \Rightarrow r_3(X,Z) \\ \text{Hierarchy: } r_1(X,Y) \Rightarrow r_2(X,Y) \\ \text{Intersection: } r_1(X,Y) \wedge r_2(X,Y) \Rightarrow r_3(X,Y) \\ \text{Mutual exclusion: } r_1(X,Y) \wedge r_2(X,Y) \Rightarrow \bot \end{array}$

- Generalization capabilities
 - Analyzing inference patterns that can be captured by a model

Inference Pattern

 $\begin{array}{l} \text{Symmetry: } r_1(X,Y) \Rightarrow r_1(Y,X) \\ \text{Anti-symmetry: } r_1(X,Y) \Rightarrow \neg r_1(Y,X) \\ \text{Inversion: } r_1(X,Y) \Leftrightarrow r_2(Y,X) \\ \text{Comp. def.: } r_1(X,Y) \wedge r_2(Y,Z) \Leftrightarrow r_3(X,Z) \\ \text{Gen. comp.: } r_1(X,Y) \wedge r_2(Y,Z) \Rightarrow r_3(X,Z) \\ \text{Hierarchy: } r_1(X,Y) \Rightarrow r_2(X,Y) \\ \text{Intersection: } r_1(X,Y) \wedge r_2(X,Y) \Rightarrow r_3(X,Y) \\ \text{Mutual exclusion: } r_1(X,Y) \wedge r_2(X,Y) \Rightarrow \bot \end{array}$

- Generalization capabilities
 - Analyzing inference patterns that can be captured by a model
 - Hierarchy and composition are fundamental patterns that have been extensively studied:
 - (Bordes et al., 2013; Sun et al., 2019; Zhang et al., 2019; Lu & Hu, 2020, Yang et al., 2015a; Trouillon et al., 2016; Kazemi & Poole, 2018; Abboud et al., 2020)

Inference Pattern

Symmetry: $r_1(X, Y) \Rightarrow r_1(Y, X)$ Anti-symmetry: $r_1(X, Y) \Rightarrow \neg r_1(Y, X)$ Inversion: $r_1(X, Y) \Leftrightarrow r_2(Y, X)$ Comp. def.: $r_1(X, Y) \land r_2(Y, Z) \Leftrightarrow r_3(X, Z)$ Gen. comp.: $r_1(X, Y) \land r_2(Y, Z) \Rightarrow r_3(X, Z)$ Hierarchy: $r_1(X, Y) \Rightarrow r_2(X, Y)$ Intersection: $r_1(X, Y) \land r_2(X, Y) \Rightarrow r_3(X, Y)$ Mutual exclusion: $r_1(X, Y) \land r_2(X, Y) \Rightarrow \bot$

- Bilinear and Spatial Models
 - Can represent hierarchy patterns (Trouillon et al., 2016; Abboud et al., 2020)

Inference Pattern	-	BoxE	ComplEx	DistMult
Symmetry: $r_1(X, Y) \Rightarrow r_1(Y, X)$	-	1	1	\checkmark
Anti-symmetry: $r_1(X, Y) \Rightarrow \neg r_1(Y, X)$		\checkmark	\checkmark	×
Inversion: $r_1(X, Y) \Leftrightarrow r_2(Y, X)$		\checkmark	\checkmark	×
Comp. def.: $r_1(X, Y) \wedge r_2(Y, Z) \Leftrightarrow r_3(X, Z)$		×	×	×
Gen. comp.: $r_1(X, Y) \land r_2(Y, Z) \Rightarrow r_3(X, Z)$		X	X	<u>×</u> _
Hierarchy: $r_1(X, Y) \Rightarrow r_2(X, Y)$		 Image: A set of the set of the		<u>√</u> I
Intersection: $r_1(\overline{X}, \overline{Y}) \land \overline{r_2}(\overline{X}, \overline{Y}) \Rightarrow \overline{r_3}(\overline{X}, \overline{Y})$			×	× –
Mutual exclusion: $r_1(X, Y) \wedge r_2(X, Y) \Rightarrow \bot$		\checkmark	\checkmark	\checkmark

- Bilinear and Spatial Models
 - Can represent hierarchy patterns (Trouillon et al., 2016; Abboud et al., 2020)

X mother_of $Y \Rightarrow X$ parent_of Y

Inference Pattern	BoxE	ComplEx	DistMult
Symmetry: $r_1(X, Y) \Rightarrow r_1(Y, X)$	~	\checkmark	1
Anti-symmetry: $r_1(X, Y) \Rightarrow \neg r_1(Y, X)$	\checkmark	\checkmark	×
Inversion: $r_1(X,Y) \Leftrightarrow r_2(Y,X)$	\checkmark	\checkmark	×
Comp. def.: $r_1(X, Y) \land r_2(Y, Z) \Leftrightarrow r_3(X, Z)$	X	×	×
Gen. comp.: $r_1(X, Y) \land r_2(Y, Z) \Rightarrow r_3(X, Z)$	<u>×</u>	X	<u>×</u> _
Hierarchy: $r_1(X, Y) \Rightarrow r_2(X, Y)$	\checkmark	\checkmark	🗸 I
Intersection: $r_1(\overline{X}, \overline{Y}) \land r_2(\overline{X}, \overline{Y}) \Rightarrow r_3(\overline{X}, \overline{Y})$	$\overline{\mathbf{v}}$	×	×
Mutual exclusion: $r_1(X, Y) \land r_2(X, Y) \Rightarrow \bot$	\checkmark	\checkmark	\checkmark

- Bilinear and Spatial Models
 - **Can represent hierarchy patterns** (Trouillon et al., 2016; Abboud et al., 2020)
 - **Cannot** represent any notion of **composition** (Sun et al., 2019; Abboud et al., 2020)

X mother_of $Y \Rightarrow X$ parent_of Y

Inference Pattern	-	BoxE	ComplEx	DistMult
Symmetry: $r_1(X, Y) \Rightarrow r_1(Y, X)$	-	1	1	\checkmark
Anti-symmetry: $r_1(X, Y) \Rightarrow \neg r_1(Y, X)$		\checkmark	\checkmark	×
Inversion: $r_1(X, Y) \Leftrightarrow r_2(Y, X)$		\checkmark		×
Comp. def.: $r_1(X, \overline{Y}) \land r_2(\overline{Y}, \overline{Z}) \Leftrightarrow r_3(\overline{X}, \overline{Z})$		×	×	X
Gen. comp.: $r_1(X, Y) \land r_2(Y, Z) \Rightarrow r_3(X, Z)$		×	X	<u>× i</u>
Hierarchy: $r_1(X, Y) \Rightarrow r_2(X, Y)$				
Intersection: $r_1(X, Y) \wedge r_2(X, Y) \Rightarrow r_3(X, Y)$		\checkmark	×	×
Mutual exclusion: $r_1(X, Y) \land r_2(X, Y) \Rightarrow \bot$		\checkmark	\checkmark	\checkmark

- Bilinear and Spatial Models
 - **Can represent hierarchy patterns** (Trouillon et al., 2016; Abboud et al., 2020)
 - **Cannot** represent any notion of **composition** (Sun et al., 2019; Abboud et al., 2020)

X mother_of $Y \land Y$ parent_of $Z \Leftrightarrow X$ grand_mother_of Z

Inference Pattern	BoxE	ComplEx	DistMult
Symmetry: $r_1(X, Y) \Rightarrow r_1(Y, X)$	1	\checkmark	1
Anti-symmetry: $r_1(X, Y) \Rightarrow \neg r_1(Y, X)$	\checkmark	\checkmark	×
Inversion: $r_1(X, Y) \Leftrightarrow r_2(Y, X)$			X
Comp. def.: $r_1(X, \overline{Y}) \wedge r_2(\overline{Y}, \overline{Z}) \Leftrightarrow r_3(\overline{X}, \overline{Z})$	X	×	×
Gen. comp.: $r_1(X, Y) \land r_2(Y, Z) \Rightarrow r_3(X, Z)$	×	×	<u>X</u> I
Hierarchy: $r_1(\overline{X}, \overline{Y}) \Rightarrow r_2(\overline{X}, \overline{Y})$			
Intersection: $r_1(X, Y) \wedge r_2(X, Y) \Rightarrow r_3(X, Y)$	\checkmark	×	×
Mutual exclusion: $r_1(X, Y) \land r_2(X, Y) \Rightarrow \bot$	\checkmark	\checkmark	\checkmark

- Functional Models
 - **Can represent a limited** notion of **composition** (Zhang et al., 2019; Abboud et al., 2020; Lu & Hu, 2020; Gao et al., 2020)

X mother_of $Y \land Y$ parent_of $Z \Leftrightarrow X$ grand_mother_of Z

Inference Pattern	RotatE	TransE
Symmetry: $r_1(X, Y) \Rightarrow r_1(Y, X)$	1	×
Anti-symmetry: $r_1(X, Y) \Rightarrow \neg r_1(Y, X)$	\checkmark	\checkmark
Inversion: $r_1(X, Y) \Leftrightarrow r_2(Y, X)$	 \checkmark	\checkmark
Comp. def.: $r_1(X, \overline{Y}) \wedge r_2(\overline{Y}, \overline{Z}) \Leftrightarrow r_3(\overline{X}, \overline{Z})$	\checkmark	\checkmark
Gen. comp.: $r_1(X, Y) \land r_2(Y, Z) \Rightarrow r_3(X, Z)$	×	Xi
Hierarchy: $r_1(X, \overline{Y}) \Rightarrow r_2(X, \overline{Y})$	 X	X
Intersection: $r_1(X, Y) \wedge r_2(X, Y) \Rightarrow r_3(X, Y)$	\checkmark	\checkmark
Mutual exclusion: $r_1(X, Y) \wedge r_2(X, Y) \Rightarrow \bot$	\checkmark	\checkmark

- Functional Models
 - **Can represent a limited** notion of **composition** (Zhang et al., 2019; Abboud et al., 2020; Lu & Hu, 2020; Gao et al., 2020)

X mother_of Y \land Y parent_of Z \Rightarrow X grand_parent_of Z X father_of Y \land Y parent_of Z \Rightarrow X grand_parent_of Z

Inference Pattern	RotatE	TransE
Symmetry: $r_1(X, Y) \Rightarrow r_1(Y, X)$	1	×
Anti-symmetry: $r_1(X, Y) \Rightarrow \neg r_1(Y, X)$	\checkmark	\checkmark
Inversion: $r_1(X, Y) \Leftrightarrow r_2(Y, X)$	\checkmark	\checkmark
Comp. def.: $r_1(X, \overline{Y}) \wedge r_2(\overline{Y}, \overline{Z}) \Leftrightarrow r_3(\overline{X}, \overline{Z})$	\checkmark	\checkmark
Gen. comp.: $r_1(X, Y) \land r_2(Y, Z) \Rightarrow r_3(X, Z)$	X	<u>X I</u>
Hierarchy: $r_1(\overline{X}, \overline{Y}) \Rightarrow r_2(\overline{X}, \overline{Y})$	X	X
Intersection: $r_1(X, Y) \wedge r_2(X, Y) \Rightarrow r_3(X, Y)$	\checkmark	\checkmark
Mutual exclusion: $r_1(X,Y) \wedge r_2(X,Y) \Rightarrow \bot$	\checkmark	\checkmark

- Functional Models
 - **Can** represent a **limited** notion of **composition** (Zhang et al., 2019; Abboud et al., 2020; Lu & Hu, 2020; Gao et al., 2020)

X mother_of Y \land Y parent_of Z \Rightarrow X grand_parent_of Z X father_of Y \land Y parent_of Z \Rightarrow X grand_parent_of Z

Inference Pattern	F	RotatE	TransE
Symmetry: $r_1(X, Y) \Rightarrow r_1(Y, X)$		1	X
Anti-symmetry: $r_1(X, Y) \Rightarrow \neg r_1(Y, X)$		\checkmark	\checkmark
Inversion: $r_1(X, Y) \Leftrightarrow r_2(Y, X)$		\checkmark	
Comp. def.: $r_1(X, \overline{Y}) \land r_2(\overline{Y}, \overline{Z}) \Leftrightarrow r_3(\overline{X}, \overline{Z})$		\checkmark	
Gen. comp.: $r_1(X, Y) \land r_2(Y, Z) \Rightarrow r_3(X, Z)$		×	Xi
Hierarchy: $r_1(X, \overline{Y}) \Rightarrow r_2(X, \overline{Y})$		- <u>x</u>	×
Intersection: $r_1(X, Y) \wedge r_2(X, Y) \Rightarrow r_3(X, Y)$		\checkmark	\checkmark
Mutual exclusion: $r_1(X, Y) \land r_2(X, Y) \Rightarrow \bot$		\checkmark	1

(Abboud et al., 2020)

- Functional Models
 - Can represent a limited notion of composition (Zhang et al., 2019; Abboud et al., 2020; Lu & Hu, 2020; Gao et al., 2020)
 - **Cannot** represent any notion of **hierarchy** (Abboud et al., 2020)

Inference Pattern	RotatE	TransE
Symmetry: $r_1(X, Y) \Rightarrow r_1(Y, X)$	1	×
Anti-symmetry: $r_1(X, Y) \Rightarrow \neg r_1(Y, X)$	\checkmark	\checkmark
Inversion: $r_1(X, Y) \Leftrightarrow r_2(Y, X)$	\checkmark	\checkmark
Comp. def.: $r_1(X, Y) \land r_2(Y, Z) \Leftrightarrow r_3(X, Z)$	\checkmark	\checkmark
Gen. comp.: $r_1(X, Y) \land r_2(Y, Z) \Rightarrow r_3(X, Z)$	X	×
Hierarchy: $r_1(\overline{X}, \overline{Y}) \Rightarrow r_2(\overline{X}, \overline{Y})$	X	X
Intersection: $r_1(\overline{X}, \overline{Y}) \land r_2(\overline{X}, \overline{Y}) \Rightarrow r_3(\overline{X}, \overline{Y})$		$\overline{}$
Mutual exclusion: $r_1(X, Y) \wedge r_2(X, Y) \Rightarrow \bot$	\checkmark	\checkmark

Inference Pattern	RotatE	TransE	BoxE	ComplEx	DistMult
Symmetry: $r_1(X, Y) \Rightarrow r_1(Y, X)$	\checkmark	×	1	1	1
Anti-symmetry: $r_1(X, Y) \Rightarrow \neg r_1(Y, X)$	\checkmark	\checkmark	\checkmark	\checkmark	×
Inversion: $r_1(X, Y) \Leftrightarrow r_2(Y, X)$	\checkmark	\checkmark	\checkmark	\checkmark	×
Comp. def.: $r_1(X, Y) \land r_2(Y, Z) \Leftrightarrow r_3(X, Z)$	\checkmark	\checkmark	×	×	×
Gen. comp.: $r_1(X, Y) \land r_2(Y, Z) \Rightarrow r_3(X, Z)$	×	×	×	×	×
Hierarchy: $r_1(X, Y) \Rightarrow r_2(X, Y)$	×	×	\checkmark	\checkmark	\checkmark
Intersection: $r_1(X, Y) \wedge r_2(X, Y) \Rightarrow r_3(X, Y)$	\checkmark	\checkmark	\checkmark	×	×
Mutual exclusion: $r_1(X, Y) \land r_2(X, Y) \Rightarrow \bot$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

- Challenge 1:
 - Contemporary KGEs cannot capture general composition

Inference Pattern	RotatE	TransE	BoxE	ComplEx	DistMult
Symmetry: $r_1(X, Y) \Rightarrow r_1(Y, X)$	1	×	1	\checkmark	1
Anti-symmetry: $r_1(X, Y) \Rightarrow \neg r_1(Y, X)$	\checkmark	\checkmark	\checkmark	\checkmark	×
Inversion: $r_1(X, Y) \Leftrightarrow r_2(Y, X)$	\checkmark	\checkmark	\checkmark	\checkmark	×
Comp. def.: $r_1(X, Y) \land r_2(Y, Z) \Leftrightarrow r_3(X, Z)$	\checkmark	\checkmark	X	X	<u>×</u> _
Gen. comp.: $r_1(\overline{X}, \overline{Y}) \land r_2(\overline{Y}, \overline{Z}) \Rightarrow r_3(\overline{X}, \overline{Z})$	×	×	× –	×	— <u>×</u> –
Hierarchy: $r_1(X, \overline{Y}) \Rightarrow r_2(\overline{X}, \overline{Y})$	X	X			
Intersection: $r_1(X, Y) \land r_2(X, Y) \Rightarrow r_3(X, Y)$	\checkmark	\checkmark	\checkmark	×	×
Mutual exclusion: $r_1(X, Y) \land r_2(X, Y) \Rightarrow \bot$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

- Challenge 1:
 - Contemporary KGEs cannot capture general composition

- Challenge 2:
 - Capturing composition and hierarchy jointly is an open problem

Inference Pattern	RotatE	TransE	BoxE	ComplEx	DistMult
Symmetry: $r_1(X, Y) \Rightarrow r_1(Y, X)$	1	×	1	\checkmark	1
Anti-symmetry: $r_1(X, Y) \Rightarrow \neg r_1(Y, X)$	\checkmark	\checkmark	\checkmark	\checkmark	×
Inversion: $r_1(X, Y) \Leftrightarrow r_2(Y, X)$	<u>/</u>	 ✓ 	\checkmark	<u></u>	X
Comp. def.: $r_1(\overline{X}, \overline{Y}) \land r_2(\overline{Y}, \overline{Z}) \Leftrightarrow r_3(\overline{X}, \overline{Z})$			×	<u>×</u>	X
Gen. comp.: $r_1(X, Y) \land r_2(Y, Z) \Rightarrow r_3(X, Z)$	×	×	×	×	×
Hierarchy: $r_1(X, Y) \Rightarrow r_2(X, Y)$	×	×	\checkmark	\checkmark	V I
Intersection: $r_1(\overline{X}, \overline{Y}) \land r_2(\overline{X}, \overline{Y}) \Rightarrow r_3(\overline{X}, \overline{Y})$				X	<u>×</u> -
Mutual exclusion: $r_1(X, Y) \wedge r_2(X, Y) \Rightarrow \bot$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

- Challenge 1:
 - Contemporary KGEs cannot capture general composition

- Challenge 2:
 - Capturing composition and hierarchy jointly is an open problem

Inference Pattern	ExpressivE	RotatE	TransE	BoxE	ComplEx	DistMult
Symmetry: $r_1(X, Y) \Rightarrow r_1(Y, X)$		 Image: A set of the set of the	×	1	\checkmark	\checkmark
Anti-symmetry: $r_1(X, Y) \Rightarrow \neg r_1(Y, X)$	1 🗸	\checkmark	\checkmark	\checkmark	\checkmark	×
Inversion: $r_1(X, Y) \Leftrightarrow r_2(Y, X)$		\checkmark	\checkmark	\checkmark	\checkmark	×
Comp. def.: $r_1(X, Y) \land r_2(Y, Z) \Leftrightarrow r_3(X, Z)$		\checkmark	\checkmark	×	×	×
Gen. comp.: $r_1(X, Y) \wedge r_2(Y, Z) \Rightarrow r_3(X, Z)$		×	×	×	×	×
Hierarchy: $r_1(X, Y) \Rightarrow r_2(X, Y)$		×	×	\checkmark	\checkmark	\checkmark
Intersection: $r_1(X, Y) \wedge r_2(X, Y) \Rightarrow r_3(X, Y)$		\checkmark	\checkmark	\checkmark	×	×
Mutual exclusion: $r_1(X, Y) \land r_2(X, Y) \Rightarrow \bot$		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Challenge: Expressiveness

- Spatial and Bilinear Models
 - Are fully expressive (except DistMult (Yang et al., 2015a))

Challenge: Expressiveness

- Spatial and Bilinear Models
 - Are fully expressive (except DistMult (Yang et al., 2015a))

- Functional Models
 - Not fully expressive, i.e., **cannot** represent any arbitrary knowledge graph
 - Struggle with one-to-many, many-to-one, and many-to-many relations

Challenge: Expressiveness

- Spatial and Bilinear Models
 - Are fully expressive (except DistMult (Yang et al., 2015a))

- Functional Models
 - Not fully expressive, i.e., **cannot** represent any arbitrary knowledge graph
 - **Struggle** with one-to-many, many-to-one, and many-to-many relations

- Challenge 3:
 - Model that is fully expressive
 - **Can** handle one-to-many, many-to-one, and many-to-many relations
 - While **keeping** the ability of functional models to capture composition

ExpressivE: Model Definition

ExpressivE: Model Definition

Fully Expressiveness

Theorem 5.1 (Expressive Power) *ExpressivE can capture any arbitrary graph G over* \mathbf{R} *and* \mathbf{E} *if the embedding dimensionality d is at least in* $O(|\mathbf{E}| * |\mathbf{R}|)$.

Generalization Capabilities

Theorem 5.2 *ExpressivE captures (a) symmetry, (b) anti-symmetry, (c) inversion, (d) hierarchy, (e) intersection, and (f) mutual exclusion.*

Generalization Capabilities

Theorem 5.2 *ExpressivE captures (a) symmetry, (b) anti-symmetry, (c) inversion, (d) hierarchy, (e) intersection, and (f) mutual exclusion.*

Theorem 5.4 *ExpressivE captures compositional definition and general composition.*

Theorem 5.4 *ExpressivE captures compositional definition and general composition.*

X mother_of Y \land Y parent_of Z \Leftrightarrow X grand_mother_of Z

Theorem 5.4 *ExpressivE captures compositional definition and general composition.*

X mother_of $Y \land Y$ parent_of $Z \Leftrightarrow X$ grand_mother_of Z

Theorem 5.4 ExpressivE captures compositional definition and general composition.

X mother_of $Y \land Y$ parent_of $Z \Leftrightarrow X$ grand_mother_of Z

Theorem 5.4 *ExpressivE captures compositional definition and general composition.*

X mother_of Y ∧ Y parent_of Z ⇔ X grand_mother_of Z X father_of Y ∧ Y parent_of Z ⇔ X grand_father_of Z

Theorem 5.4 *ExpressivE captures compositional definition and general composition.*

X mother_of Y ∧ Y parent_of Z ⇔ X grand_mother_of Z X father_of Y ∧ Y parent_of Z ⇔ X grand_father_of Z

Theorem 5.4 ExpressivE captures compositional definition and general composition.

X mother_of $Y \land Y$ parent_of $Z \Rightarrow X$ grand_parent_of Z X father_of $Y \land Y$ parent_of $Z \Rightarrow X$ grand_parent_of Z

Theorem 5.4 ExpressivE captures compositional definition and general composition.

X mother_of Y \land Y parent_of Z \Rightarrow X grand_parent_of Z X father_of Y \land Y parent_of Z \Rightarrow X grand_parent_of Z

Family	Model		WN	18RR		FB15k-237			
tial		H@1	H@3	H@10	MRR	H@1	H@3	H@10	MRR
pal	Base ExpressivE	.464	.522	.597	.508	.243	.366	.512	.333
& Sp	Func. ExpressivE	.407	.519	.619	.482	.256	.387	.535	.350
	BoxE	.400	.472	.541	.451	.238	.374	.538	.337
inc	RotatE	.428	.492	.571	.476	.241	.375	.533	.338
Fu	TransE	.013	.401	.529	.223	.233	.372	.531	.332
inear	DistMult	-	-	.531	.452	-	-	.531	.343
	ComplEx	-	-	.547	.475	-	-	.536	.348
Bil	TuckER	.443	.482	.526	.470	.266	.394	.544	.358

Best-published MRR and Hit@K:

BoxE: (Abboud et al., 2020) TransE and RotatE: (Sun et al., 2019) TuckER: (Balazevic et al., 2019) DistMult and ComplEx: (Ruffinelli et al., 2020; Yang et al., 2015b)

Family	Model	WN18RR				FB15k-237			
patial	Base ExpressivE	H@1 .464	H@3 .522	H@10 .597	MRR .508	H@1 .243	H@3 .366	H@10 .512	MRR .333
1c. & S	Func. ExpressivE BoxE RotatE	.407 .400 .428	.519 .472 .492	.619 .541 .571	.482 .451 .476	.256 .238 .241	.387 .374 .375	.535 .538 .533	.350 .337 .338
Fui	TransE	.013	.401	.529	.223	.233	.372	.531	.332
Bilinear	DistMult ComplEx TuckER	- - .443	- .482	.531 .547 .526	.452 - .475 .470	.266	.394	.531 .536 .544	.343 .348 .358

Best-published MRR and Hit@K:

BoxE: (Abboud et al., 2020) TransE and RotatE: (Sun et al., 2019) TuckER: (Balazevic et al., 2019) DistMult and ComplEx: (Ruffinelli et al., 2020; Yang et al., 2015b)

Family	Model	WN18RR				FB15k-237			
Func. & Spatial	Base ExpressivE Func. ExpressivE BoxE RotatE TransE	H@1 .464 .407 .400 .428 .013	H@3 .522 .519 .472 .492 .401	H@10 .597 .619 .541 .571 .529	MRR .508 .482 .451 .476 .223	H@1 .243 .256 .238 .241 .233	H@3 .366 .387 .374 .375 .372	H@10 .512 .535 .538 .533 .531	MRR .333 .350 .337 .338 .332
Bilinear	DistMult ComplEx TuckER	- - .443	.482	.531 .547 .526	.452 .475 .470	- - .266	.394	.531 .536 .544	.343 .348 .358

Best-published MRR and Hit@K:

BoxE: (Abboud et al., 2020) TransE and RotatE: (Sun et al., 2019) TuckER: (Balazevic et al., 2019) DistMult and ComplEx: (Ruffinelli et al., 2020; Yang et al., 2015b)

Family	Model	WN18RR				FB15k-237			
tial		H@1	H@3	H@10	MRR	H@1	H@3	H@10	MRR
pat	Base ExpressivE	.464	.522	.597	.508	.243	.366	.512	.333
S	Func. ExpressivE	.407	.519	.619	.482	.256	.387	.535	.350
8	BoxE	.400	.472	.541	.451	.238	.374	.538	.337
nc	RotatE	.428	.492	.571	.476	.241	.375	.533	.338
Fu	TransE	.013	.401	.529	.223	.233	.372	.531	.332
ar	DistMult	-	-	.531	.452	-	-	.531	.343
ine	ComplEx	-	-	.547	.475	-	-	.536	.348
Bil	TuckER	.443	.482	.526	.470	.266	.394	.544	.358

	Benchmark	Dimensionality	ExpressivE	BoxE	RotatE	
Best-published MRR and Hit@K:	WN18RR FB15k-237	500 1000	467MB 366MB	930MB 687MB	930MB 687MB	
BoxE: (Abboud et al., 2020) TransE and RotatE: (Sun et al., 2019) TuckER: (Balazevic et al., 2019)						_

DistMult and ComplEx: (Ruffinelli et al., 2020; Yang et al., 2015b)

Family	Model	WN18RR				FB15k-237			
ial		H@1_	H@3	H@10	MRR	H@1	H@3	H@10	MRR
pat	Base ExpressivE	.464	.522	.597	.508	.243	.366	.512	.333
Func. & S _I	Func. ExpressivE	.407	.519	.619	.482	.256	.387	.535	.350
	BoxE	.400	.472	.541	.451	.238	.374	.538	.337
	RotatE	.428	.492	.571	.476	241	.375	533_	.338
	TransE	.013	.401	.529	.223	.233	.372	.531	.332
inear	DistMult	-	-	.531	.452	-	-	.531	.343
	ComplEx	-	-	.547	.475	-	-	.536	.348
Bil	TuckER	.443	.482	.526	.470	.266	.394	.544	.358

	Benchmark	Dimensionality	ExpressivE	BoxE	RotatE	
	WN18RR	500	467MB	930MB	930MB	
Best-published MRR and Hit@K: BoxE: (Abboud et al., 2020)	FB15k-237	1000	366MB	687MB	687MB	
TransE and RotatE: (Sun et al., 2019)						-

DistMult and ComplEx: (Ruffinelli et al., 2020; Yang et al., 2015b)

Extension of ExpressivE: SpeedE

Extension of ExpressivE: SpeedE

• Theoretical analysis revealed that we can
- Theoretical analysis revealed that we can
 - Simplify the model

- Theoretical analysis revealed that we can
 - Simplify the model

- Theoretical analysis revealed that we can
 - Simplify the model
 - Define a more flexible distance function

- Theoretical analysis revealed that we can
 - Simplify the model
 - Define a more flexible distance function
 - Preserve geometrical interpretation

- Theoretical analysis revealed that we can
 - Simplify the model
 - Define a more flexible distance function
 - Preserve geometrical interpretation

• SpeedE's advancements

- Theoretical analysis revealed that we can
 - Simplify the model
 - Define a more flexible distance function
 - Preserve geometrical interpretation

- SpeedE's advancements
 - Higher scalability

- Theoretical analysis revealed that we can
 - Simplify the model
 - Define a more flexible distance function
 - Preserve geometrical interpretation

- SpeedE's advancements
 - Higher scalability
 - Increased space and time efficiency
 - Allows application in **low-resource** settings

- Theoretical analysis revealed that we can
 - Simplify the model
 - Define a more flexible distance function
 - Preserve geometrical interpretation

- SpeedE's advancements
 - Higher scalability
 - Increased space and time efficiency
 - Allows application in **low-resource** settings
 - Increased KGC prediction performance
 - Especially for low-dimensional embeddings

SpeedE: Low-Dimensional KGC

Space	Model		WN	18RR			FB15	5k-237			YAG	O3-10	
		MRR	H@1	H@3	H@10	MRR	H@1	H@3	H@10	MRR	H@1	H@3	H@10

Best-published MRR and H@K are from:

SpeedE, Min_SpeedE, ExpressivE: Benchmarked by us ConE: (Baietal.,2021) HAKE and RotatE: (Zheng etal.,2022) TuckER: (Wangetal.,2021) The rest: (Chamietal.,2020).

Space	Model		WN	18RR			FB1	5k-237			YAG	03-10	
		MRR	H@1	H@3	H@10	MRR	H@1	H@3	H@10	MRR	H@1	H@3	H@10
ean	TuckER	.428	.401	-	.474	.306	.223	-	.475	-	-	-	-
lide	MuRE	.458	.421	.471	.525	.313	.226	.340	.489	.283	.187	.317	.478
Euc	RefE	.455	.419	.470	.521	.302	.216	.330	.474	.370	.289	.403	.527
Η	RotE	.463	.426	.477	.529	.307	.220	.337	.482	.381	.295	.417	.548
	AttE	.456	.419	.471	.526	.311	.223	.339	.488	.374	.290	.410	.537
	HAKE	.416	.389	.427	.467	.296	.212	.323	.463	.253	.164	.286	.430
	RotatE	.387	.330	.417	.491	.290	.208	.316	.458	.235	.153	.260	.410
an	ComplEx-N3	.420	.390	.420	.460	.294	.211	.322	.463	.336	.259	.367	.484
lide	MuRP	.465	.420	.484	.544	.323	.235	.353	.501	.230	.150	.247	.392
lucl	RefH	.447	.408	.464	.518	.312	.224	.342	.489	.381	.302	.415	.530
n-E	RotH	.472	.428	.490	.553	.314	.223	.346	.497	.393	.307	.435	.559
No	AttH	.466	.419	.484	.551	.324	.236	.354	.501	.397	.310	.437	.566
	ConE	.471	.436	.486	.537	-	-	-	-	-	-	-	-

Space	Model		WN	18RR			FB1	5k-237			YAG	O3-10	
		MRR	H@1	H@3	H@10	MRR	H@1	H@3	H@10	MRR	H@1	H@3	H@10
ean	TuckER	.428	.401	-	.474	.306	.223	-	.475	-	-	-	-
lide	MuRE	.458	.421	.471	.525	.313	.226	.340	.489	.283	.187	.317	.478
Euc	RefE	.455	.419	.470	.521	.302	.216	.330	.474	.370	.289	.403	.527
Ι	RotE	.463	.426	.477	.529	.307	.220	.337	.482	.381	.295	.417	.548
	AttE	.456	.419	.471	.526	.311	.223	.339	.488	.374	.290	.410	.537
	HAKE	.416	.389	.427	.467	.296	.212	.323	.463	.253	.164	.286	.430
	RotatE	.387	.330	.417	.491	.290	.208	.316	.458	.235	.153	.260	.410
an	ComplEx-N3	.420	.390	.420	.460	.294	.211	.322	.463	.336	.259	.367	.484
lide	MuRP	.465	.420	.484	.544	.323	.235	.353	.501	.230	.150	.247	.392
Buc	RefH	.447	.408	.464	.518	.312	.224	.342	.489	.381	.302	.415	.530
ц-ц	RotH	.472	.428	.490	.553	.314	.223	.346	.497	.393	.307	.435	.559
No	AttH	.466	.419	.484	.551	.324	.236	.354	.501	.397	.310	.437	.566
	ConE	.471	.436	.486	.537	-	-	-	-	-	-	-	<u> </u>

Space	Model		WN	18RR			FB1	5k-237			YAG	03-10	
		MRR	H@1	H@3	H@10	MRR	H@1	H@3	H@10	MRR	H@1	H@3	H@10
ean	TuckER	.428	.401	-	.474	.306	.223	-	.475	-	-	-	-
lide	MuRE	.458	.421	.471	.525	.313	.226	.340	.489	.283	.187	.317	.478
Euc	RefE	.455	.419	.470	.521	.302	.216	.330	.474	.370	.289	.403	.527
H	RotE	.463	.426	.477	.529	.307	.220	.337	.482	.381	.295	.417	.548
	AttE	.456	.419	.471	.526	.311	.223	.339	.488	.374	.290	.410	.537
	HAKE	.416	.389	.427	.467	.296	.212	.323	.463	.253	.164	.286	.430
	RotatE	.387	.330	.417	.491	.290	.208	.316	.458	.235	.153	.260	.410
an	ComplEx-N3	.420	.390	.420	.460	.294	.211	.322	.463	.336	.259	.367	.484
lide	MuRP	.465	.420	.484	.544	.323	.235	.353	.501	.230	.150	.247	.392
[] Inc]	RefH	.447	.408	.464	.518	.312	.224	.342	.489	.381	.302	.415	.530
	RotH	.472	.428	.490	.553	.314	.223	.346	.497	.393	.307	.435	.559
No	AttH	.466	.419	.484	.551	.324	.236	.354	.501	.397	.310	.437	.566
l	ConE	.471	.436	.486	.537	-	-	-	-	-	-	-	

Space	Model		WN	18RR			FB15	5k-237			YAG	O3-10	
		MRR	H@1	H@3	H@10	MRR	H@1	H@3	H@10	MRR	H@1	H@3	H@10
_	ExpressivE	.485	.442	.499	.571	.298	.208	.331	.476	.333	.257	.367	.476
ean	TuckER	.428	.401	-	.474	.306	.223		.475		-	-	-
lid	MuRE	.458	.421	.471	.525	.313	.226	.340	.489	.283	.187	.317	.478
Euc	RefE	.455	.419	.470	.521	.302	.216	.330	.474	.370	.289	.403	.527
H	RotE	.463	.426	.477	.529	.307	.220	.337	.482	.381	.295	.417	.548
	AttE	.456	.419	.471	.526	.311	.223	.339	.488	.374	.290	.410	.537
	HAKE	.416	.389	.427	.467	.296	.212	.323	.463	.253	.164	.286	.430
	RotatE	.387	.330	.417	.491	.290	.208	.316	.458	.235	.153	.260	.410
an	ComplEx-N3	.420	.390	.420	.460	.294	.211	.322	.463	.336	.259	.367	.484
ide	MuRP	.465	.420	.484	.544	.323	.235	.353	.501	.230	.150	.247	.392
ucl	RefH	.447	.408	.464	.518	.312	.224	.342	.489	.381	.302	.415	.530
л-Е	RotH	.472	.428	.490	.553	.314	.223	.346	.497	.393	.307	.435	.559
Noi	AttH	.466	.419	.484	.551	.324	.236	.354	.501	.397	.310	.437	.566
7	ConE	.471	.436	.486	.537	-	-	-	-	-	-	-	-

Space	Model		WN	18RR			FB1	5k-237			YAG	03-10	
		MRR	H@1	H@3	H@10	MRR	H@1	H@3	H@10	MRR	H@1	H@3	H@10
	SpeedE	.493	.446	.512	.584	.320	.227	.356	.504	.413	.332	.453	.564
	Min_SpeedE	.485	.442	.499	.573	.319	.226	.356	.502	.410	.328	.449	.563
	ExpressivE	.485	.442	.499	.571	.298	.208	.331	.476	.333	.257	.367	.476
ean	TuckER	.428	.401	-	.474	.306	.223	-	.475	-	-	-	-
lid	MuRE	.458	.421	.471	.525	.313	.226	.340	.489	.283	.187	.317	.478
Euc	RefE	.455	.419	.470	.521	.302	.216	.330	.474	.370	.289	.403	.527
	RotE	.463	.426	.477	.529	.307	.220	.337	.482	.381	.295	.417	.548
	AttE	.456	.419	.471	.526	.311	.223	.339	.488	.374	.290	.410	.537
	HAKE	.416	.389	.427	.467	.296	.212	.323	.463	.253	.164	.286	.430
	RotatE	.387	.330	.417	.491	.290	.208	.316	.458	.235	.153	.260	.410
an	ComplEx-N3	.420	.390	.420	.460	.294	.211	.322	.463	.336	.259	.367	.484
lide	MuRP	.465	.420	.484	.544	.323	.235	.353	.501	.230	.150	.247	.392
ucl	RefH	.447	.408	.464	.518	.312	.224	.342	.489	.381	.302	.415	.530
n-F	RotH	.472	.428	.490	.553	.314	.223	.346	.497	.393	.307	.435	.559
No	AttH	.466	.419	.484	.551	.324	.236	.354	.501	.397	.310	.437	.566
	ConE	.471	.436	.486	.537	-	-	-	-	-	-	-	-

SpeedE: Space and Time Efficency

Model	Dim.	MRR	Conv. Time	#Parameters
SpeedE	50	.500	6min	2M
ExpressivE	200	.500	31min	8M
HAKE	500	.497	50min	41M
ConE	500	.496	1.5h	20M
RotH	500	.496	2h	21M

SpeedE: Space and Time Efficency

Model	Dim.	MRR	Conv. Time	#Parameters
SpeedE	50	.500	6min	2M
ExpressivE	200	.500	31min	8M
HAKE	500	.497	50min	41M
ConE	500	.496	1.5h	20M
RotH	500	.496	2h	21M

SpeedE: Space and Time Efficency

Model	Dim.	MRR	Conv. Time	#Parameters
SpeedE	50	.500	6min	2M
ExpressivE	200	.500	31min	8M
HAKE	500	.497	50min	41M
ConE	500	.496	1.5h	20M
RotH	500	.496	2h	21M

Model	r	Time per Epoch							
	WN18RR	FB15k-237	YAGO3-10						
SpeedE	7s	22s	88s						
ExpressivE	15s	46s	185s						
RotH	42s	112s	520s						
AttH	43s	113s	533s						

• ExpressivE: A spatio-functional KGE that

- ExpressivE: A spatio-functional KGE that
 - is **fully expressive** (first among functional KGEs)

- ExpressivE: A spatio-functional KGE that
 - is **fully expressive** (first among functional KGEs)
 - o captures composition and hierarchy jointly

- ExpressivE: A spatio-functional KGE that
 - is **fully expressive** (first among functional KGEs)
 - o captures composition and hierarchy jointly
 - captures general composition

- ExpressivE: A spatio-functional KGE that
 - is **fully expressive** (first among functional KGEs)
 - o captures composition and hierarchy jointly
 - o captures general composition
 - allows for an **intuitive** geometric interpretation

- ExpressivE: A spatio-functional KGE that
 - is **fully expressive** (first among functional KGEs)
 - captures composition and hierarchy jointly
 - captures general composition
 - allows for an **intuitive** geometric interpretation

• SpeedE: A resource-efficient KGE that

- ExpressivE: A spatio-functional KGE that
 - is **fully expressive** (first among functional KGEs)
 - o captures composition and hierarchy jointly
 - captures general composition
 - allows for an **intuitive** geometric interpretation

- SpeedE: A resource-efficient KGE that
 - needs a **fourth** of ExpressivE's parameters and

- ExpressivE: A spatio-functional KGE that
 - is **fully expressive** (first among functional KGEs)
 - captures composition and hierarchy jointly
 - captures general composition
 - allows for an **intuitive** geometric interpretation

- SpeedE: A resource-efficient KGE that
 - needs a **fourth** of ExpressivE's parameters and
 - a **fifth** of ExpressivE's training time to reach

- ExpressivE: A spatio-functional KGE that
 - is **fully expressive** (first among functional KGEs)
 - captures composition and hierarchy jointly
 - captures general composition
 - allows for an **intuitive** geometric interpretation

- SpeedE: A resource-efficient KGE that
 - needs a **fourth** of ExpressivE's parameters and
 - a fifth of ExpressivE's training time to reach
 - the **same** KGC performance on WN18RR

- ExpressivE: A spatio-functional KGE that
 - is **fully expressive** (first among functional KGEs)
 - o captures composition and hierarchy jointly
 - captures general composition
 - allows for an **intuitive** geometric interpretation

- SpeedE: A resource-efficient KGE that
 - needs a **fourth** of ExpressivE's parameters and
 - a fifth of ExpressivE's training time to reach
 - the **same** KGC performance on WN18RR
 - reaching SotA performance with **low-dimensional** embeddings

ExpressivE, ICLR 2023

Thank you

SpeedE, NAACL 2024

aleksandar.pavlovic@tuwien.ac.at